am given an equation (attatched image) and am told that G = newtons gravitational constant, m1 is the mass of the first object, m2 is the mass of the second object, and r is the distance separating them. Consider m1 to be stationary with m2 undergoing uniform circular motion around m1 at a distance r. How do I show that GPE = -2KE for any gravitational circular orbit (where KE is the kinetic energy of object 2).
am given an equation (attatched image) and am told that G = newtons gravitational constant, m1 is the mass of the first object, m2 is the mass of the second object, and r is the distance separating them. Consider m1 to be stationary with m2 undergoing uniform circular motion around m1 at a distance r. How do I show that GPE = -2KE for any gravitational circular orbit (where KE is the kinetic energy of object 2).
Related questions
Question
I am given an equation (attatched image) and am told that G = newtons gravitational constant, m1 is the mass of the first object, m2 is the mass of the second object, and r is the distance separating them. Consider m1 to be stationary with m2 undergoing uniform circular motion around m1 at a distance r. How do I show that GPE = -2KE for any gravitational circular orbit (where KE is the kinetic energy of object 2).
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images