After sitting on a shelf for a while, a can of soda at a room temperature (69°F) s placed inside a refrigerator and slowly cools. The temperature of the refrigerator is 37°F. Newton's Law of Cooling explains that the temperature of the can of soda will decrease proportionally to the difference between the emperature of the can of soda and the temperature of the refrigerator, as given by the formula below: T = Ta + (To – Ta)e-kt

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
After sitting on a shelf for a while, a can of soda at a room temperature (69°F)
is placed inside a refrigerator and slowly cools. The temperature of the
refrigerator is 37°F. Newton's Law of Cooling explains that the temperature
of the can of soda will decrease proportionally to the difference between the
temperature of the can of soda and the temperature of the refrigerator, as
given by the formula below:
T = Ta + (To – Ta)e¬kt
the temperature surrounding the object
To = the initial temperature of the object
t = the time in minutes
the temperature of the object after t minutes
k = decay constant
T
The can of soda reaches the temperature of 54°F after 40 minutes. Using
this information, find the value of k, to the nearest thousandth. Use the
resulting equation to determine the Fahrenheit temperature of the can of
soda, to the nearest degree, after 95 minutes.
Enter only the final temperature into the input box.
Transcribed Image Text:After sitting on a shelf for a while, a can of soda at a room temperature (69°F) is placed inside a refrigerator and slowly cools. The temperature of the refrigerator is 37°F. Newton's Law of Cooling explains that the temperature of the can of soda will decrease proportionally to the difference between the temperature of the can of soda and the temperature of the refrigerator, as given by the formula below: T = Ta + (To – Ta)e¬kt the temperature surrounding the object To = the initial temperature of the object t = the time in minutes the temperature of the object after t minutes k = decay constant T The can of soda reaches the temperature of 54°F after 40 minutes. Using this information, find the value of k, to the nearest thousandth. Use the resulting equation to determine the Fahrenheit temperature of the can of soda, to the nearest degree, after 95 minutes. Enter only the final temperature into the input box.
Expert Solution
Step 1

Given:

Ta = the temperature surrounding the object = temp. of refrigerator = 37oF

To = initial temperature of the object =temp. of can soda when kept in room =  69oF

T = temperature of object after t minutes = 54oF

t = the time in minutes = 40 minutes

k = decay constant

To calculate:

1. k, for the above data.

2. Temp. after 95 minutes, T

 

 

 

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY