Absenteeism:  Absenteeism can be a serious employment problem.  It is estimated that absenteeism reduces potential output by more than 10%.  Two economists launched a research project to learn more about the problem.  They randomly selected 100 organizations to participate in a 1-year study.  For each organization, they recorded the average number of days absent per employee and several variables thought to affect absenteeism. Management’s goal here is to analyze the data and determine which factors may be helpful in predicting absenteeism. Now let us build a model to predict absenteeism based on key independent variables available in this dataset; wage, PctPT, PctU, Av Shift and U/MRel. Correlation matrix is provided below. Why are the variables AvShift and U/MRel excluded from this correlation matrix?  Which variable in the matrix is likely to provide the best simple linear regression model and why? Does the correlation matrix show any evidence of collinearity? Explain.    Data: Wage Pct PT Pct U Av Shift U/M Rel Absent 22477 8.5 57.1 1 1 5.4 29939 1.9 41.5 0 1 4.1 22957 12.2 52.6 1 0 11.5 18888 30.8 65.1 0 1 2.1 15078 6.8 68.8 0 1 5.9 15481 5.1 46.4 0 0 12.9 21481 25.3 38.9 0 1 3.5 29687 9.2 17.2 0 0 2.6 13603 8.4 12.9 0 0 8.6 18303 4.9 18.1 0 1 2.7 20832 23.8 64.4 1 1 6.6 22325 24.1 63.7 1 1 2.1 19964 8.6 12.2 0 1 3.8 32496 5.9 11.8 1 0 4.3 15795 2.9 25.8 0 1 4.3 21138 24.3 53.2 0 0 2.2 18859 20.6 22.8 1 1 8.6 12023 9 49.8 1 1 10.8 33272 24 39.1 1 0 2.9 22325 11.9 32.6 1 0 5.3 26147 0 67.7 1 0 8.2 33229 11.7 10.8 0 0 2.8 37970 14.6 25.5 1 1 2.4 15281 27.2 31.8 0 0 2.8 19423 17.2 35 1 1 5 26587 13.9 41.9 1 1 9.5 22963 2.6 52.9 0 1 4.3 26404 6.4 64.4 0 1 8.9 16315 4.9 69.7 0 1 7.2 26759 23.2 61.8 1 1 5.6 30824 13.2 52.1 0 1 2.4 31979 27.7 57.4 1 1 2.7 23135 7 15.2 0 0 13.4 18014 0 38.7 1 0 14.8 18541 13.8 69.4 1 1 10.7 16747 9.9 67.2 1 0 10.3 13473 6.3 47.8 0 1 4.6 42986 13.4 24.5 1 0 3.9 23964 8.8 79.4 1 0 13.3 30794 0.4 12.1 1 0 2.2 21104 14.7 71 0 1 5.7 19137 7.7 28 1 0 11.8 26058 7.3 45.6 0 1 2.5 22085 6.8 25.4 0 1 2.1 29044 8.6 40.6 0 0 4.1 24205 19.6 25.1 1 1 4.9 17698 10.8 42.3 1 1 7.7 26399 4.5 63.3 1 1 6.3 40590 15.9 69.4 1 1 2.9 24805 5.7 17.7 1 1 2.6 18899 13.1 54.8 1 1 6.1 26802 15.5 46.5 0 1 6 30034 11.8 53.2 1 0 6.7 15713 16.6 41.2 1 0 11.9 18280 6.4 65 1 1 9.3 41009 6.7 54.9 0 1 3.6 24021 14 20.6 1 1 2.6 21836 27.6 29 0 1 2.1 21157 5.5 50.2 1 1 9 19529 14.5 56.6 1 0 11 31240 26.3 36.4 1 1 2.9 20963 0 0 1 1 2.2 33826 8.2 87.9 0 1 3.3

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Topic Video
Question

Absenteeism:  Absenteeism can be a serious employment problem.  It is estimated that absenteeism reduces potential output by more than 10%.  Two economists launched a research project to learn more about the problem.  They randomly selected 100 organizations to participate in a 1-year study.  For each organization, they recorded the average number of days absent per employee and several variables thought to affect absenteeism. Management’s goal here is to analyze the data and determine which factors may be helpful in predicting absenteeism.

Now let us build a model to predict absenteeism based on key independent variables available in this dataset; wage, PctPT, PctU, Av Shift and U/MRel. Correlation matrix is provided below.

Why are the variables AvShift and U/MRel excluded from this correlation matrix? 

Which variable in the matrix is likely to provide the best simple linear regression model and why?

Does the correlation matrix show any evidence of collinearity? Explain. 

 

Data:

Wage Pct PT Pct U Av Shift U/M Rel Absent
22477 8.5 57.1 1 1 5.4
29939 1.9 41.5 0 1 4.1
22957 12.2 52.6 1 0 11.5
18888 30.8 65.1 0 1 2.1
15078 6.8 68.8 0 1 5.9
15481 5.1 46.4 0 0 12.9
21481 25.3 38.9 0 1 3.5
29687 9.2 17.2 0 0 2.6
13603 8.4 12.9 0 0 8.6
18303 4.9 18.1 0 1 2.7
20832 23.8 64.4 1 1 6.6
22325 24.1 63.7 1 1 2.1
19964 8.6 12.2 0 1 3.8
32496 5.9 11.8 1 0 4.3
15795 2.9 25.8 0 1 4.3
21138 24.3 53.2 0 0 2.2
18859 20.6 22.8 1 1 8.6
12023 9 49.8 1 1 10.8
33272 24 39.1 1 0 2.9
22325 11.9 32.6 1 0 5.3
26147 0 67.7 1 0 8.2
33229 11.7 10.8 0 0 2.8
37970 14.6 25.5 1 1 2.4
15281 27.2 31.8 0 0 2.8
19423 17.2 35 1 1 5
26587 13.9 41.9 1 1 9.5
22963 2.6 52.9 0 1 4.3
26404 6.4 64.4 0 1 8.9
16315 4.9 69.7 0 1 7.2
26759 23.2 61.8 1 1 5.6
30824 13.2 52.1 0 1 2.4
31979 27.7 57.4 1 1 2.7
23135 7 15.2 0 0 13.4
18014 0 38.7 1 0 14.8
18541 13.8 69.4 1 1 10.7
16747 9.9 67.2 1 0 10.3
13473 6.3 47.8 0 1 4.6
42986 13.4 24.5 1 0 3.9
23964 8.8 79.4 1 0 13.3
30794 0.4 12.1 1 0 2.2
21104 14.7 71 0 1 5.7
19137 7.7 28 1 0 11.8
26058 7.3 45.6 0 1 2.5
22085 6.8 25.4 0 1 2.1
29044 8.6 40.6 0 0 4.1
24205 19.6 25.1 1 1 4.9
17698 10.8 42.3 1 1 7.7
26399 4.5 63.3 1 1 6.3
40590 15.9 69.4 1 1 2.9
24805 5.7 17.7 1 1 2.6
18899 13.1 54.8 1 1 6.1
26802 15.5 46.5 0 1 6
30034 11.8 53.2 1 0 6.7
15713 16.6 41.2 1 0 11.9
18280 6.4 65 1 1 9.3
41009 6.7 54.9 0 1 3.6
24021 14 20.6 1 1 2.6
21836 27.6 29 0 1 2.1
21157 5.5 50.2 1 1 9
19529 14.5 56.6 1 0 11
31240 26.3 36.4 1 1 2.9
20963 0 0 1 1 2.2
33826 8.2 87.9 0 1 3.3
23349 0 38.5 1 1 5.9
22695 25.4 47 1 1 4
30475 0 69.3 1 0 10.8
16631 5.9 48.2 1 1 7.1
28996 18.6 29.3 1 1 2.9
15807 16.9 42.9 1 1 6.2
15585 0 59.4 1 0 10.3
18466 9 69.4 1 0 13.5
35140 21.1 37.1 1 1 6.7
33459 14.1 19.5 1 1 2.6
24357 0 21.5 1 1 5.2
19370 3.7 35 1 1 7.2
21820 6.3 0 1 1 3.5
23351 12.3 27.1 1 1 5.4
22938 6.8 68.5 1 1 5.8
16477 10 61.5 1 1 11.7
20790 28.5 59.9 1 0 5.6
20352 19.4 34.6 1 0 4.6
19743 14.3 39.7 1 0 8.6
22775 10.3 35.7 1 1 2.1
24229 0.9 26.7 1 0 9.6
41195 8.6 66.7 1 0 4
23143 4.2 63.1 0 1 10.6
13400 28.1 46.7 0 0 5.8
21371 14.9 78.9 1 0 7.4
28675 7.7 63.4 0 0 10.3
18171 6.9 47.9 0 1 6.3
23670 20.5 46.3 1 1 6.7
29745 6.1 53.9 1 0 6.7
14672 13.9 46 1 0 13.3
20382 0 38.6 1 1 4.1
24952 14.6 53.8 0 1 4.6
28878 7.4 12.2 1 1 2.7
24558 24.5 37 1 1 8
20447 0.9 27.4 1 1 4.2
27714 8.7 58.1 0 0 9
18116 3.5 47.5 1 1 7.7
Wage
Pct PT
Pct U
Absent
Wage
Pct PT
0.0375
1
Pct U
-0.0416
0.0913
1
Absent
-0.3989
-0.2527
0.3379
1
Transcribed Image Text:Wage Pct PT Pct U Absent Wage Pct PT 0.0375 1 Pct U -0.0416 0.0913 1 Absent -0.3989 -0.2527 0.3379 1
Column 1, Wage:
Average employee wage
Column 2, Pct PT:
Percentage of part-time employees
Column 3, Pct U :
Percentage of unionized employees
Column 4: Av Shift : Availability of shiftwork
1= Yes
0 = No
Column 5: U/M Rel : Union-management relationship
1= good 0 = Not good
Column 6: Absent: Average number of days absent per employee
Transcribed Image Text:Column 1, Wage: Average employee wage Column 2, Pct PT: Percentage of part-time employees Column 3, Pct U : Percentage of unionized employees Column 4: Av Shift : Availability of shiftwork 1= Yes 0 = No Column 5: U/M Rel : Union-management relationship 1= good 0 = Not good Column 6: Absent: Average number of days absent per employee
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Centre, Spread, and Shape of a Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman