A60 (a) A car of mass 1000 kg is initially at rest. It moves along a straight road for 20s and then comes to rest again. The speed-time graph for the movement is: vims 20 10 10 15 20 bs (i) What is the total distance travelled? (ii) What resultant force acts on the car during the part of the motion represented by CD? (iii) What is the momentum of the car when it has reached its maximum speed? Use this momentum value to find the constant resultant acceler- ating force.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

Show all working explaining detailly each step.

Answer a(i), (ii) & (iii)

(iv) During the part of the motion
represented by OB on the graph,
the constant resultant force found in
(iii) is acting on the moving car
although it is inoving through air.
Sketch a graph to show how the
driving force would have to vary with
time to produce this constant accel-
eration. Explain the shape of your
graph.
(b) If, when travelling at this maximum
speed, the 1000 kg car had struck and
remained attached to a stationary vehicle
of mass 1500 kg, with what speed would
the interlocked vehicles have travelled
immediately after collision?
Calculate the kinetic energy of the car just
prior to this collision and the kinetic
energy of the interlocked vehicles just
afterwards. Comment upon the values
obtained.
Explain how certain design features in a
modern car help to protect the driver of a
car in such a collision.
[L]
Transcribed Image Text:(iv) During the part of the motion represented by OB on the graph, the constant resultant force found in (iii) is acting on the moving car although it is inoving through air. Sketch a graph to show how the driving force would have to vary with time to produce this constant accel- eration. Explain the shape of your graph. (b) If, when travelling at this maximum speed, the 1000 kg car had struck and remained attached to a stationary vehicle of mass 1500 kg, with what speed would the interlocked vehicles have travelled immediately after collision? Calculate the kinetic energy of the car just prior to this collision and the kinetic energy of the interlocked vehicles just afterwards. Comment upon the values obtained. Explain how certain design features in a modern car help to protect the driver of a car in such a collision. [L]
A60 (a) A cur of mass 1000 kg is initiolly at rest. It
moves along a straight road for 20 s and
then comes to rest again. The speed-time
graph for the movement is:
vims
20
10
10
15
20 ts
(i) What is the total distance travelled?
(ii) What resultant force acts on the car
during the part of the motion
represented by CD?
(ii) What is the momentum of the car
when it has reached its maximum
speed? Use this momentum value to
find the constant resultant acceler-
ating force.
Transcribed Image Text:A60 (a) A cur of mass 1000 kg is initiolly at rest. It moves along a straight road for 20 s and then comes to rest again. The speed-time graph for the movement is: vims 20 10 10 15 20 ts (i) What is the total distance travelled? (ii) What resultant force acts on the car during the part of the motion represented by CD? (ii) What is the momentum of the car when it has reached its maximum speed? Use this momentum value to find the constant resultant acceler- ating force.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Chemical Thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON