A white dwarf star is essentially a degenerate electron gas, with a bunch of nuclei mixed in to balance the charge and to provide the gravitational attraction that holds the star together. In this problem you will derive a relation between the mass and the radius of a white dwarf star, modeling the star as a uniform-density sphere. White dwarf stars tend to be extremely hot by our standards; nevertheless, it is an excellent approximation in this problem to set T = O. Suppose instead that the electrons in the white dwarf star are highly relativistic. Using the result of the previous problem, show that the total kinetic energy of the electrons is now proportional to 1/R instead of 1/R2. Argue that there is no stable equilibrium radius for such a star.

icon
Related questions
Question

A white dwarf star is essentially a degenerate electron gas, with a bunch of nuclei mixed in to balance the charge and to provide the gravitational attraction that holds the star together. In this problem you will derive a relation between the mass and the radius of a white dwarf star, modeling the star as a uniform-density sphere. White dwarf stars tend to be extremely hot by our standards; nevertheless, it is an excellent approximation in this problem to set T = O.

Suppose instead that the electrons in the white dwarf star are highly relativistic. Using the result of the previous problem, show that the total kinetic energy of the electrons is now proportional to 1/R instead of 1/R2. Argue that there is no stable equilibrium radius for such a star.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer