A vapor-compression system produces 20 tons of refrigeration using R12 as a refrigerant while operating between a condenser temperature of 41.6°c and an evaporator temperature of – 25°c. The superheat at the compression suction and the sub-cooling at the condenser outlet are 10°K. The pressure drop are 10kPa across the evaporator and the condenser. Determine the refrigerating effect in kJ per kilogram, the circulating rate of R12 in kilograms per second, the power required, the COP, the heat rejected in kW and the volume flow rate of refrigerant at compressor inlet conditions. 10° K subcooling 7 T=41.6° C h=C s=C Tevap =-25° C 10° K superheat

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A vapor-compression system produces 20 tons of refrigeration using R12 as a refrigerant while operating between a condenser temperature of 41.6°c and
an evaporator temperature of – 25°c. The superheat at the compression suction and the sub-cooling at the condenser outlet are 10°K. The pressure drop
are 10kPa across the evaporator and the condenser. Determine the refrigerating effect in kJ per kilogram, the circulating rate of R12 in kilograms per
second, the power required, the COP, the heat rejected in kW and the volume flow rate of refrigerant at compressor inlet conditions.
10° K subcooling
4
Tm= 41.6° C
h= C
s =C
Tevap =-25° C
10° K superheat
Transcribed Image Text:A vapor-compression system produces 20 tons of refrigeration using R12 as a refrigerant while operating between a condenser temperature of 41.6°c and an evaporator temperature of – 25°c. The superheat at the compression suction and the sub-cooling at the condenser outlet are 10°K. The pressure drop are 10kPa across the evaporator and the condenser. Determine the refrigerating effect in kJ per kilogram, the circulating rate of R12 in kilograms per second, the power required, the COP, the heat rejected in kW and the volume flow rate of refrigerant at compressor inlet conditions. 10° K subcooling 4 Tm= 41.6° C h= C s =C Tevap =-25° C 10° K superheat
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY