An air conditioner using refrigant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain the cold space at 20degC while operating its condenser at 1.2 MPa. Determine the a. COP of the system when the evaporator's temperature is set at 18degC b. If the refrigerant leaves the compressor at 73degC at a rate of 4.85 kg/min, determine the rate of heat rejection to the environment (kW) c. isentropic efficiency of the compressor (%) and compressor power requirement (kW) Disregard any heat loss in the expansion valve and compressor as well as the change in potential and kinetic energy of the refrigerant in any part of the cycle.
An air conditioner using refrigant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain the cold space at 20degC while operating its condenser at 1.2 MPa. Determine the a. COP of the system when the evaporator's temperature is set at 18degC b. If the refrigerant leaves the compressor at 73degC at a rate of 4.85 kg/min, determine the rate of heat rejection to the environment (kW) c. isentropic efficiency of the compressor (%) and compressor power requirement (kW) Disregard any heat loss in the expansion valve and compressor as well as the change in potential and kinetic energy of the refrigerant in any part of the cycle.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
An air conditioner using refrigant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain the cold space at 20degC while operating its condenser at 1.2 MPa.
Determine the
a. COP of the system when the evaporator's temperature is set at 18degC
b. If the refrigerant leaves the compressor at 73degC at a rate of 4.85 kg/min, determine the rate of heat rejection to the environment (kW)
c. isentropic efficiency of the compressor (%) and compressor power requirement (kW)
Disregard any heat loss in the expansion valve and compressor as well as the change in potential and kinetic energy of the refrigerant in any part of the cycle.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY