A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 83.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 10 and the compressor has an isentropic efficiency of 85 %. The turbine inlet temperature is 1,140 K, and its isentropic efficiency is 85 %. The turbine exit pressure is 50 kPa. Flow through the diffuser and nozzle is isentropic. Sketch the process on the T-s diagram and using an
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 83.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 10 and the compressor has an isentropic efficiency of 85 %. The turbine inlet temperature is 1,140 K, and its isentropic efficiency is 85 %. The turbine exit pressure is 50 kPa. Flow through the diffuser and nozzle is isentropic. Sketch the process on the T-s diagram and using an air-standard analysis, determine,
the power delivered to the propeller, in MWt
the velocity at the nozzle exit, in m/s.
Neglect kinetic energy except at the diffuser inlet and the nozzle exit.
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images