A steel component is subjected to alternate cyclical loading. The steel follows Basquin's law for high cycle fatigue, o, x Nº = C, (where the stress amplitude is in MPa). Ignore the geometric detail and assume that Marin's modifying factors are all equal to 1. You are given the minimum stress amin = -213 MPa, the maximum stress omax = 213 MPa. The material data are Tensile strength oUTS = 539 MPa, Basquin's constant c, = 875 MPa, Basquin's exponent a = 0.085. a) Calculate the stress ratio R, the stress amplitude o, in MPa and the mean stress am in MPa. The answers are acceptable with a tolerance of 0.01 for R and of 1 MPa the stresses. R: MPa MPa b) Calculate the corresponding life, in 10° cycles, (tolerance of 0.1
A steel component is subjected to alternate cyclical loading. The steel follows Basquin's law for high cycle fatigue, o, x Nº = C, (where the stress amplitude is in MPa). Ignore the geometric detail and assume that Marin's modifying factors are all equal to 1. You are given the minimum stress amin = -213 MPa, the maximum stress omax = 213 MPa. The material data are Tensile strength oUTS = 539 MPa, Basquin's constant c, = 875 MPa, Basquin's exponent a = 0.085. a) Calculate the stress ratio R, the stress amplitude o, in MPa and the mean stress am in MPa. The answers are acceptable with a tolerance of 0.01 for R and of 1 MPa the stresses. R: MPa MPa b) Calculate the corresponding life, in 10° cycles, (tolerance of 0.1
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Do part b,c,d

Transcribed Image Text:b) Calculate the corresponding life, in 10° cycles, (tolerance of 0.1
106 cycles)
N :
In practice, the load is not purely alternate, and
the minimum stress is omin =-132 MPa,
the maximum stress is omax = 294 MPa.
c) Calculate the new stress ratio R, the stress amplitude o, in MPa
and the mean stress o, in MPa.
The answers are acceptable with a tolerance of 1 MPa for
stresses.
R:
MPa
MPi
d) Calculate the corresponding life, in 10 cycles, (tolerance of 0.1
106 cycles)
N :

Transcribed Image Text:A steel component is subjected to alternate cyclical loading.
The steel follows Basquin's law for high cycle fatigue, o, x N = C,
(where the stress amplitude is in MPa).
Ignore the geometric detail and assume that Marin's modifying
factors are all equal to 1.
You are given
the minimum stress ain = -213 MPa,
the maximum stress omax = 213 MPa.
The material data are
Tensile strength oUTS = 539 MPa,
Basquin's constant c, = 875 MPa,
Basquin's exponent a = 0.085.
a) Calculate the stress ratio R, the stress amplitude o, in MPa and
the mean stress am in MPa.
The answers are acceptable with a tolerance of 0.01 for R and of
1 MPa the stresses.
R:
MPa
MPа
b) Calculate the corresponding life, in 10° cycles, (tolerance of 0.1
106 cycles)
N :
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY