A shell-and-tube heat exchanger is used to cool compressed liquid methanol from 176 °F to 104 °F. The methanol flows on the shell side of the exchanger. The coolant is water that rises in temperature from 50 °F to 86 °F and flows within the tubes at a rate of 68.9 kg s1. Finding the appropriate thermophysical data and applying the proper equations, you are required to do the following: (a) Calculate i) methanol mass flow rate in the exchanger, ii) methanol volumetric flowrate at the inlet of the exchanger. (b) i) For the counter-current flow of the fluids calculate the log mean temperature difference, ii) explain the purpose of calculating this difference iiil evplain quantitatively wby is the counter-current flow in

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A shell-and-tube heat exchanger is used to cool compressed liquid methanol
from 176 °F to 104 °F. The methanol flows on the shell side of the
exchanger. The coolant is water that rises in temperature from 50 °F to
86 °F and flows within the tubes at a rate of 68.9 kg s1. Finding the
appropriate thermophysical data and applying the proper equations, you are
required to do the following:
(a)
Calculate i) methanol mass flow rate in the exchanger, ii) methanol
volumetric flowrate at the inlet of the exchanger.
(b) i) For the counter-current flow of the fluids calculate the log
temperature difference, ii) explain the purpose of calculating this
difference, iii) explain, quantitatively, why is the counter-current flow in
heat exchangers preferred to co-current flow.
mean
Transcribed Image Text:A shell-and-tube heat exchanger is used to cool compressed liquid methanol from 176 °F to 104 °F. The methanol flows on the shell side of the exchanger. The coolant is water that rises in temperature from 50 °F to 86 °F and flows within the tubes at a rate of 68.9 kg s1. Finding the appropriate thermophysical data and applying the proper equations, you are required to do the following: (a) Calculate i) methanol mass flow rate in the exchanger, ii) methanol volumetric flowrate at the inlet of the exchanger. (b) i) For the counter-current flow of the fluids calculate the log temperature difference, ii) explain the purpose of calculating this difference, iii) explain, quantitatively, why is the counter-current flow in heat exchangers preferred to co-current flow. mean
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Heat Exchangers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY