A refrigeration system absorbs heat from a space at 2 ◦C at a rate of 6.9 kW and rejects heat to water in the condenser. Water enters the condenser at 16 ◦C at a rate of 0.27 kg/s. The COP of the system is estimated to be 1.85. Determine (a) the power input to the system, (b) the temperature of the water at the exit of the condenser, and (c) the second-law efficiency and the exergy destruction for the refrigerator. Take the dead-state temperature to be the inlet temperature of water in the condenser. The specific heat of water is 4.18 kJ/kg· ◦C.
A refrigeration system absorbs heat from a space at 2 ◦C at a rate of 6.9 kW and rejects heat to water in the condenser. Water enters the condenser at 16 ◦C at a rate of 0.27 kg/s. The COP of the system is estimated to be 1.85. Determine (a) the power input to the system, (b) the temperature of the water at the exit of the condenser, and (c) the second-law efficiency and the exergy destruction for the refrigerator. Take the dead-state temperature to be the inlet temperature of water in the condenser. The specific heat of water is 4.18 kJ/kg· ◦C.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A refrigeration system absorbs heat from a space at 2 ◦C at a rate of 6.9 kW and rejects heat
to water in the condenser. Water enters the condenser at 16 ◦C at a rate of 0.27 kg/s. The COP
of the system is estimated to be 1.85. Determine (a) the power input to the system, (b) the
temperature of the water at the exit of the condenser, and (c) the second-law efficiency and
the exergy destruction for the refrigerator. Take the dead-state temperature to be the inlet
temperature of water in the condenser. The specific heat of water is 4.18 kJ/kg·
◦C.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY