The temperature inside a kitchen freezer is a constant 256 K, while the temperature of the air in the kitchen is a constant 302 K. The freezer's insulation is imperfect, and it conducts energy into its interior at a rate of 0.150 W. Assuming the freezer can be approximated as ideal (operating in a Carnot cycle), what is the average power required by the freezer's motor to maintain the constant interior temperature? W

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%
The temperature inside a kitchen freezer is a constant 256 K, while the temperature of the air in the kitchen is a constant 302 K.
The freezer's insulation is imperfect, and it conducts energy into its interior at a rate of 0.150 W. Assuming the freezer can be
approximated as ideal (operating in a Carnot cycle), what is the average power required by the freezer's motor to maintain the
constant interior temperature?
W
Need Help?
Read It
DETA LC
Transcribed Image Text:The temperature inside a kitchen freezer is a constant 256 K, while the temperature of the air in the kitchen is a constant 302 K. The freezer's insulation is imperfect, and it conducts energy into its interior at a rate of 0.150 W. Assuming the freezer can be approximated as ideal (operating in a Carnot cycle), what is the average power required by the freezer's motor to maintain the constant interior temperature? W Need Help? Read It DETA LC
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY