A piston-cylinder device initially contains CO2 at 200 kPa and 400°C and the total enclosed volume is 300 litres. Due to heat loss, the piston moves downwards to a position where it sits on a pair of stoppers and its final enclosed volume is 150 litres. Further heat loss leads to the pressure being reduced to 160kPa. Workout 1) the final temperature, 2) the total work done by CO2 and 3) the total heat transferred to CO2. Also make some comments on the result of heat and create a schematic p-v diagram of the process. The following assumptions are to be made: CO2 is a perfect gas and its molecular mass is 44kg/kmol. The ratio of specific heat capacities, γ (gamma) is 1.3 The volume occupied by the stoppers is to be ignored. There is no leakage in the system There is no friction between the cylinder and piston walls and the piston moved slowly at the same speed therefore, no acceleration. For the conversion from Celsius to Kelvin, use 273 Use 8314.5 J/kmol.K for the universal gas constant
A piston-cylinder device initially contains CO2 at 200 kPa and 400°C and the total enclosed volume is 300 litres. Due to heat loss, the piston moves downwards to a position where it sits on a pair of stoppers and its final enclosed volume is 150 litres. Further heat loss leads to the pressure being reduced to 160kPa. Workout 1) the final temperature, 2) the total work done by CO2 and 3) the total heat transferred to CO2. Also make some comments on the result of heat and create a schematic p-v diagram of the process. The following assumptions are to be made: CO2 is a perfect gas and its molecular mass is 44kg/kmol. The ratio of specific heat capacities, γ (gamma) is 1.3 The volume occupied by the stoppers is to be ignored. There is no leakage in the system There is no friction between the cylinder and piston walls and the piston moved slowly at the same speed therefore, no acceleration. For the conversion from Celsius to Kelvin, use 273 Use 8314.5 J/kmol.K for the universal gas constant
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A piston-cylinder device initially contains CO2 at 200 kPa and 400°C and the total enclosed volume is 300 litres. Due to heat loss, the piston moves downwards to a position where it sits on a pair of stoppers and its final enclosed volume is 150 litres. Further heat loss leads to the pressure being reduced to 160kPa.
Workout 1) the final temperature, 2) the total work done by CO2 and 3) the total heat transferred to CO2. Also make some comments on the result of heat and create a schematic p-v diagram of the process.
The following assumptions are to be made:
- CO2 is a perfect gas and its molecular mass is 44kg/kmol.
- The ratio of specific heat capacities, γ (gamma) is 1.3
- The volume occupied by the stoppers is to be ignored.
- There is no leakage in the system
- There is no friction between the cylinder and piston walls and the piston moved slowly at the same speed therefore, no acceleration.
- For the conversion from Celsius to Kelvin, use 273
- Use 8314.5 J/kmol.K for the universal gas constant
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
Unlock instant AI solutions
Tap the button
to generate a solution
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY