A neutron in a star makes an elastic head-on collision with a carb on nucleus initially at rest. The mass of the carbon nucleus is 12 times the mass of the neutron mn = 1.7 ×10^−27kg. The initial kinetic energy of the neutron is 1.6 × 10^−13J. a) Show that the final speed of the carbon nucleus, Vc, is given by (see image) where vn is the initial speed of the neutron.
A neutron in a star makes an elastic head-on collision with a carb on nucleus initially at rest. The mass of the carbon nucleus is 12 times the mass of the neutron mn = 1.7 ×10^−27kg. The initial kinetic energy of the neutron is 1.6 × 10^−13J. a) Show that the final speed of the carbon nucleus, Vc, is given by (see image) where vn is the initial speed of the neutron.
Related questions
Question
A neutron in a star makes an elastic head-on collision with a carb on nucleus initially at rest. The mass of the carbon nucleus is 12 times the mass of the neutron mn = 1.7 ×10^−27kg. The initial kinetic energy of the neutron is 1.6 × 10^−13J.
a) Show that the final speed of the carbon nucleus, Vc, is given by (see image)
where vn is the initial speed of the neutron.

Transcribed Image Text:Vc =
2
-Un
13
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
