A matrix A and an echelon form of A are shown below. Find a basis for Col A and a basis for Nul A. A = 57 3 - 26 4 64-14 23 2-12 Find a basis for Col A. 1 2 3 - 10 014 -8 000 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Matrix and Echelon Form

A matrix \( A \) and an echelon form of \( A \) are shown below. Find a basis for \( \text{Col } A \) and a basis for \( \text{Nul } A \).

\[
A = \begin{bmatrix} 
5 & 7 & 3 & -26 \\ 
6 & 4 & -14 & 4 \\ 
2 & 3 & 2 & -12 
\end{bmatrix} 
\sim 
\begin{bmatrix} 
1 & 2 & 3 & -10 \\ 
0 & 1 & 4 & -8 \\ 
0 & 0 & 0 & 0 
\end{bmatrix}
\]

---

### Instructions

**Find a basis for \( \text{Col } A \).**

- Identify the pivot columns in the echelon form of the matrix. 
- Use the corresponding columns from the original matrix \( A \) to form a basis for \( \text{Col } A \).

**Identifying Pivot Columns:**

1. The first column [1, 0, 0] corresponds to a pivot column.
2. The second column [2, 1, 0] corresponds to a pivot column.

Use the columns from the original matrix \( A \) that correspond to the pivot columns:

- Column 1 from matrix \( A \): \([5, 6, 2]\)
- Column 2 from matrix \( A \): \([7, 4, 3]\)

Thus, the basis for \( \text{Col } A \) is \(\{ [5, 6, 2], [7, 4, 3] \}\).
Transcribed Image Text:### Matrix and Echelon Form A matrix \( A \) and an echelon form of \( A \) are shown below. Find a basis for \( \text{Col } A \) and a basis for \( \text{Nul } A \). \[ A = \begin{bmatrix} 5 & 7 & 3 & -26 \\ 6 & 4 & -14 & 4 \\ 2 & 3 & 2 & -12 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & -10 \\ 0 & 1 & 4 & -8 \\ 0 & 0 & 0 & 0 \end{bmatrix} \] --- ### Instructions **Find a basis for \( \text{Col } A \).** - Identify the pivot columns in the echelon form of the matrix. - Use the corresponding columns from the original matrix \( A \) to form a basis for \( \text{Col } A \). **Identifying Pivot Columns:** 1. The first column [1, 0, 0] corresponds to a pivot column. 2. The second column [2, 1, 0] corresponds to a pivot column. Use the columns from the original matrix \( A \) that correspond to the pivot columns: - Column 1 from matrix \( A \): \([5, 6, 2]\) - Column 2 from matrix \( A \): \([7, 4, 3]\) Thus, the basis for \( \text{Col } A \) is \(\{ [5, 6, 2], [7, 4, 3] \}\).
Expert Solution
Step 1: Introduction to given details

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,