Complete parts a and b below for the matrix A. -49 63 28 - 35 - 21 21 49 28 - 42 - 49 14 42 35 - 35 A= - 35 49 42 - 35 42 - 14 - 56 21 - 35 - 56 7 49 28 - 56 -42 56 35 - 28 - 28- 63 -21 a. Construct matrices C and N whose columns are bases for Col A and NulA, respectively, and construct a matrix R whose rows form a basis for Row A. c-O N=O R= b. Construct a matrix M whose columns form a basis for Nul A", form the matrices S=[RT N]and T=[c m], and explain why S and T should be square. Verify that both S and T are invertible. M=[ The matrix S= [RT N]is -O because the columns of R"and N are in Rand dim Row A+ dim Nul A=D. The matrix T=[CM]isI×O because the columns of C and M are in R and dim Col A + dim Nul AT =O by the Rank Theorem, since Col A = Row A".
Complete parts a and b below for the matrix A. -49 63 28 - 35 - 21 21 49 28 - 42 - 49 14 42 35 - 35 A= - 35 49 42 - 35 42 - 14 - 56 21 - 35 - 56 7 49 28 - 56 -42 56 35 - 28 - 28- 63 -21 a. Construct matrices C and N whose columns are bases for Col A and NulA, respectively, and construct a matrix R whose rows form a basis for Row A. c-O N=O R= b. Construct a matrix M whose columns form a basis for Nul A", form the matrices S=[RT N]and T=[c m], and explain why S and T should be square. Verify that both S and T are invertible. M=[ The matrix S= [RT N]is -O because the columns of R"and N are in Rand dim Row A+ dim Nul A=D. The matrix T=[CM]isI×O because the columns of C and M are in R and dim Col A + dim Nul AT =O by the Rank Theorem, since Col A = Row A".
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Complete parts a and b below for the matrix A.
- 49
63
28 - 35 - 21
21
49
28 - 42 - 49
14
42
35 - 35
A=
- 35
49
42 - 35
42 - 14 - 56
21 - 35 - 56
7
49
28 - 56
- 42
56
35 - 28 - 28 - 63 -21
a. Construct matrices C and N whose columns are bases for Col A and Nul A, respectively, and construct a matrix R whose rows form a basis for Row A.
c=0
C =
N=O
R=
b. Construct a matrix M whose columns form a basis for Nul A', form the matrices S= RT N and T= C M, and explain why S and T should be square. Verify that both S and T are invertible.
M=
The matrix S= RT N isx because the columns of RT and N are in RU and dim Row A + dim Nul A =.
[RT N]#
The matrix T=[C M ]is xO because the columns of C and M are in R and dim Col A + dim Nul A
by the Rank Theorem, since Col A = Row AT.
The columns of the matrix S are linearly
The columns of S form a basis of R
Thus, by the Invertible Matrix Theorem, S is invertible.
The columns of the matrix T are linearly
The columns of T form a basis of RU. Thus, by the Invertible Matrix Theorem, T is invertible.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffba142dd-1494-4b78-9e41-2122df5fca48%2Ff264796f-66af-483d-b3c0-9b58498c5aff%2Ft0y2fcd_processed.png&w=3840&q=75)
Transcribed Image Text:Complete parts a and b below for the matrix A.
- 49
63
28 - 35 - 21
21
49
28 - 42 - 49
14
42
35 - 35
A=
- 35
49
42 - 35
42 - 14 - 56
21 - 35 - 56
7
49
28 - 56
- 42
56
35 - 28 - 28 - 63 -21
a. Construct matrices C and N whose columns are bases for Col A and Nul A, respectively, and construct a matrix R whose rows form a basis for Row A.
c=0
C =
N=O
R=
b. Construct a matrix M whose columns form a basis for Nul A', form the matrices S= RT N and T= C M, and explain why S and T should be square. Verify that both S and T are invertible.
M=
The matrix S= RT N isx because the columns of RT and N are in RU and dim Row A + dim Nul A =.
[RT N]#
The matrix T=[C M ]is xO because the columns of C and M are in R and dim Col A + dim Nul A
by the Rank Theorem, since Col A = Row AT.
The columns of the matrix S are linearly
The columns of S form a basis of R
Thus, by the Invertible Matrix Theorem, S is invertible.
The columns of the matrix T are linearly
The columns of T form a basis of RU. Thus, by the Invertible Matrix Theorem, T is invertible.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)