A cylindrical specimen of aluminum alloy having a diameter of 12.8 mm and a gauge length (lo) of 50.800 mm is pulled in tension. Use the load–elongation characteristics shown in the following table and answer the following questions. (10p) i- Convert the data as engineering stress (σ) versus engineering strain (ε). ii- Compute the modulus of elasticity (E) (with a precision of ±5000 MPa) iii- Determine the yield strength at a strain offset of 0.002 (σy) (with a precision of ±20 MPa) iv- Determine the tensile strength (TS) of this alloy.
A cylindrical specimen of aluminum alloy having a diameter of 12.8 mm and a gauge length (lo) of 50.800 mm is pulled in tension. Use the load–elongation characteristics shown in the following table and answer the following questions. (10p) i- Convert the data as engineering stress (σ) versus engineering strain (ε). ii- Compute the modulus of elasticity (E) (with a precision of ±5000 MPa) iii- Determine the yield strength at a strain offset of 0.002 (σy) (with a precision of ±20 MPa) iv- Determine the tensile strength (TS) of this alloy.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
A cylindrical specimen of aluminum alloy having a diameter of 12.8 mm and a gauge length (lo) of 50.800 mm is pulled in tension. Use the load–elongation characteristics shown in the following table and answer the following questions. (10p)
i- Convert the data as engineering stress (σ) versus engineering strain (ε). ii- Compute the modulus of elasticity (E) (with a precision of ±5000 MPa) iii- Determine the yield strength at a strain offset of 0.002 (σy) (with a precision of ±20 MPa) iv- Determine the tensile strength (TS) of this alloy.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Step 1:The Given data:
VIEWStep 2:i) Convert the data as engineering stress (σ) versus engineering strain (ε):
VIEWStep 3:ii)Compute the modulus of elasticity (E) (with a precision of ±5000 MPa)
VIEWStep 4:iii)Determine the yield strength at a strain offset of 0.002 (σy)
VIEWStep 5:iv)Determine the tensile strength (TS) of this alloy
VIEWTrending now
This is a popular solution!
Step by step
Solved in 5 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning