A cross flow plate fin compact heat exchanger is to be used for this heat recovery application. We wish to select a heat exchanger which will yield ε = 0.75, using stainless steel fin materials. Calculate the UA required to obtain ε = 0.75. Calculate UA by ε-NTU methods and state why the LMTD method is difficult to use. For the ε -NTU methods, first use the graphical method and then the equation.
Heat Exchangers
Heat exchangers are the types of equipment that are primarily employed to transfer the thermal energy from one fluid to another, provided that one of the fluids should be at a higher thermal energy content than the other fluid.
Heat Exchanger
The heat exchanger is a combination of two words ''Heat'' and ''Exchanger''. It is a mechanical device that is used to exchange heat energy between two fluids.
A cross flow plate fin compact heat exchanger is to be used for this heat recovery application.
We wish to select a heat exchanger which will yield ε = 0.75, using stainless steel fin materials. Calculate the UA required to obtain ε = 0.75. Calculate UA by ε-NTU methods and state why the LMTD method is difficult to use. For the ε -NTU methods, first use the graphical method and then the equation.



Step by step
Solved in 3 steps with 2 images









