A corrections officer read that 58% of runaways are female. He believes that the percentage is higher than 58%. He selected a random sample of 90 runaways and found that 63 were female. At a=0.05, can we conclude that his belief is correct?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question
A corrections officer read that 58% of runaways are female. He believes that the percentage is higher than 58%. He selected a random sample of 90 runaways and found that 63 were female. At a=0.05, can we conclude that his belief is correct?
**CV Calculation:**

CV = invNorm [field for input]

Round to Two Decimal Places

CV = [field for input]

---

**f) What formula will we use for the test value?**

1. \( z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\hat{p} \cdot \hat{q} \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \)

2. \( z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}} \) [Selected option]

3. \( t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \)

4. \( t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} \)

5. \( z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \)

[The selected option has a check mark next to it.]

**Explanation of the Formulas:**

- **Z-Test for Two Proportions:** The first option is for comparing two population proportions, using their sample estimates and size.

- **Z-Test for Single Proportion:** The selected option is for checking a sample proportion against a known population proportion.

- **T-Test for Two Means:** The third option compares means from two independent samples, accounting for variance.

- **T-Test for Single Mean (with sample standard deviation):** The fourth option tests a sample mean against a known population mean using the sample's standard deviation.

- **Z-Test for Single Mean (with population standard deviation):** The final option utilizes the population standard deviation to test the sample mean against the population mean.
Transcribed Image Text:**CV Calculation:** CV = invNorm [field for input] Round to Two Decimal Places CV = [field for input] --- **f) What formula will we use for the test value?** 1. \( z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\hat{p} \cdot \hat{q} \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \) 2. \( z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}} \) [Selected option] 3. \( t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \) 4. \( t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} \) 5. \( z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \) [The selected option has a check mark next to it.] **Explanation of the Formulas:** - **Z-Test for Two Proportions:** The first option is for comparing two population proportions, using their sample estimates and size. - **Z-Test for Single Proportion:** The selected option is for checking a sample proportion against a known population proportion. - **T-Test for Two Means:** The third option compares means from two independent samples, accounting for variance. - **T-Test for Single Mean (with sample standard deviation):** The fourth option tests a sample mean against a known population mean using the sample's standard deviation. - **Z-Test for Single Mean (with population standard deviation):** The final option utilizes the population standard deviation to test the sample mean against the population mean.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman