A container, spherical in shape, with an outside diameter of 30 cm holds a hot fluid at 180°C. The container is insulated with two layers of each 10 cm thick of insulation of k = 0.05 and k2 = 0.20 W/mK (starting from inside). If the interface temperature between the first and second layer of insulation is 50°C, what is the rate of heat transfer through the container in Watts? Also, determine the outside surface temperature of the second layer of insulation.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter1: Basic Modes Of Heat Transfer
Section: Chapter Questions
Problem 1.19P: 1.19 A cryogenic fluid is stored in a 0.3-m-diameter spherical container is still air. If the...
icon
Related questions
Question
A container, spherical in shape, with an outside diameter of 30 cm holds a hot fluid at 180°C. The container is
insulated with two layers of each 10 cm thick of insulation of k = 0.05 and k2 = 0.20 W/mK (starting from inside).
If the interface temperature between the first and second layer of insulation is 50°C, what is the rate of heat
transfer through the container in Watts? Also, determine the outside surface temperature of the second layer of
insulation.
Transcribed Image Text:A container, spherical in shape, with an outside diameter of 30 cm holds a hot fluid at 180°C. The container is insulated with two layers of each 10 cm thick of insulation of k = 0.05 and k2 = 0.20 W/mK (starting from inside). If the interface temperature between the first and second layer of insulation is 50°C, what is the rate of heat transfer through the container in Watts? Also, determine the outside surface temperature of the second layer of insulation.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning