A compound shaft drives three gears, as shown in Figure P6.14. Segments (1) and (2) of the shaft are hollow bronze [G = 6,500 ksi] tubes with an outside diameter of 1.75 in. and a wall thickness of 0.1875 in. Segments (3) and (4) are solid 1.00 in. diameter steel [G = 11,500 ksi] shafts. The shaft lengths are L1 = 60 in., L2 = 14 in., L3 = 20 in., and L4 = 26 in. The torques applied to the shafts have magnitudes TB = 960 lb ⋅ ft, TD = 450 lb ⋅ ft, and TE = 130 lb ⋅ ft, acting in the directions shown. The bearings shown allow the shaft to turn freely. Calculate (a) the maximum shear stress in the compound shaft. (b) the rotation angle of flange C with respect to flange A. (c) the rotation angle of gear E with respect to flange A.
A compound shaft drives three gears, as shown in Figure
P6.14. Segments (1) and (2) of the shaft are hollow bronze [G =
6,500 ksi] tubes with an outside diameter of 1.75 in. and a wall
thickness of 0.1875 in. Segments (3) and (4) are solid 1.00 in. diameter
steel [G = 11,500 ksi] shafts. The shaft lengths are L1 = 60 in.,
L2 = 14 in., L3 = 20 in., and L4 = 26 in. The torques applied to the
shafts have magnitudes TB = 960 lb ⋅ ft, TD = 450 lb ⋅ ft, and TE =
130 lb ⋅ ft, acting in the directions shown. The bearings shown allow
the shaft to turn freely. Calculate
(a) the maximum shear stress in the compound shaft.
(b) the rotation angle of flange C with respect to flange A.
(c) the rotation angle of gear E with respect to flange A.
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 5 images
For Tmax=TC/J in the first part why is 16 in the numerator