A community council must decide which recreation facilities to construct in its community. Five new recreation facilities have been proposed - a soccer field (xs), an athletic field (xa), a gymnasium (xg). a swimming pool (xp), a tennis center (xp). The council wants to select facilities that will maximize the expected daily usage by the residents of the community, subject to budget and selection limitations. The expected daily usage and cost information for each facility are given below: Recreation Facility Expected Usage (people/day) Cost (S in K) Soccer field 180 50 Athletic field 130 20 Gymnasium 240 85 Swimming pool 270 40 Tennis center 70 15 The community has a $140K construction budget. The selection must also comply with the following two criteria: (1) At least two of the proposed facilities must be selected; and (2) gymnasium and tennis center cannot be selected simultaneously. Fill in the blanks to complete the formulation for this 0-1 integer programming model that maximizes the expected usage. You should type the missing coefficient values. (Hint: If a variable should not appear in a constraint, then you should type 0 for its coefficient value.) Max Z = 180 xg+ 130 xa + 240 xg + Xp + st. 50 xs + 20 xa + Xg + Xp + 15 x4s 140 1 xg + 1 xg + 1 xg + 1 xXp + 1 x¢2 Xa+ Xg+ Xp+ Xj is binary for all i

Practical Management Science
6th Edition
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:WINSTON, Wayne L.
Chapter2: Introduction To Spreadsheet Modeling
Section: Chapter Questions
Problem 20P: Julie James is opening a lemonade stand. She believes the fixed cost per week of running the stand...
icon
Related questions
Question
A community council must decide which recreation facilities to construct in its community. Five new recreation facilities have been proposed – a soccer field (xs), an athletic field (Xa), a gymnasium (xg), a swimming pool (xp), a
tennis center (x;). The council wants to select facilities that will maximize the expected daily usage by the residents of the community, subject to budget and selection limitations. The expected daily usage and cost information for
each facility are given below:
Recreation Facility
Expected Usage (people/day)
Cost ($ in K)
Soccer field
180
50
Athletic field
130
20
Gymnasium
240
85
Swimming pool
270
40
Tennis center
70
15
The community has a $140K construction budget. The selection must also comply with the following two criteria: (1) At least two of the proposed facilities must be selected; and (2) gymnasium and tennis center cannot be selected
simultaneously.
Fill in the blanks to complete the formulation for this 0-1 integer programming model that maximizes the expected usage. You should type the missing coefficient values. (Hint: If a variable should not appear in a constraint, then you
should type 0 for its coefficient value.)
Max Z = 180 Xg + 130 xa + 240 xg +
0 xg*
Xp +
st.
50 xs + 20 xa +
Xg +
Xp + 15 x4s 140
1 xs + 1 xa + 1 xg + 1 xp + 1 x2
Xs+
Xa+
Xg+
Xp+
X; is binary for all i
Transcribed Image Text:A community council must decide which recreation facilities to construct in its community. Five new recreation facilities have been proposed – a soccer field (xs), an athletic field (Xa), a gymnasium (xg), a swimming pool (xp), a tennis center (x;). The council wants to select facilities that will maximize the expected daily usage by the residents of the community, subject to budget and selection limitations. The expected daily usage and cost information for each facility are given below: Recreation Facility Expected Usage (people/day) Cost ($ in K) Soccer field 180 50 Athletic field 130 20 Gymnasium 240 85 Swimming pool 270 40 Tennis center 70 15 The community has a $140K construction budget. The selection must also comply with the following two criteria: (1) At least two of the proposed facilities must be selected; and (2) gymnasium and tennis center cannot be selected simultaneously. Fill in the blanks to complete the formulation for this 0-1 integer programming model that maximizes the expected usage. You should type the missing coefficient values. (Hint: If a variable should not appear in a constraint, then you should type 0 for its coefficient value.) Max Z = 180 Xg + 130 xa + 240 xg + 0 xg* Xp + st. 50 xs + 20 xa + Xg + Xp + 15 x4s 140 1 xs + 1 xa + 1 xg + 1 xp + 1 x2 Xs+ Xa+ Xg+ Xp+ X; is binary for all i
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Practical Management Science
Practical Management Science
Operations Management
ISBN:
9781337406659
Author:
WINSTON, Wayne L.
Publisher:
Cengage,
Operations Management
Operations Management
Operations Management
ISBN:
9781259667473
Author:
William J Stevenson
Publisher:
McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi…
Operations and Supply Chain Management (Mcgraw-hi…
Operations Management
ISBN:
9781259666100
Author:
F. Robert Jacobs, Richard B Chase
Publisher:
McGraw-Hill Education
Business in Action
Business in Action
Operations Management
ISBN:
9780135198100
Author:
BOVEE
Publisher:
PEARSON CO
Purchasing and Supply Chain Management
Purchasing and Supply Chain Management
Operations Management
ISBN:
9781285869681
Author:
Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:
Cengage Learning
Production and Operations Analysis, Seventh Editi…
Production and Operations Analysis, Seventh Editi…
Operations Management
ISBN:
9781478623069
Author:
Steven Nahmias, Tava Lennon Olsen
Publisher:
Waveland Press, Inc.