A cell phone manufacturer tests the battery lifetimes of its cell phones by recording the time it takes for the battery charges to run out while testers are playing games on the phones continuously. The manufacturer claims that the population mean of the battery lifetimes of all phones of their latest model is 5.28 hours. As a researcher for a consumer information service, you want to test that claim. To do so, you select a random sample of 45 cell phones of the manufacturer's latest model and record their battery lifetimes. Assume it is known that the population standard deviation of the battery lifetimes for that cell phone model is 2.73 hours. Based on your sample, follow the steps below to construct a 90% confidence interval for the population mean of the battery lifetimes for all phones of the manufacturer's latest model. Then state whether the confidence interval you construct contradicts the manufacturer's claim. (If necessary, consult a list of formulas.) (a) Click on "Take Sample" to see the results from your random sample of 45 phones of the manufacturer's latest model. (b) Take Sample Sample size: Point estimate: 0 Population standard deviation: 0 Critical value: 0 Compute 0.00 Number of phones Enter the values of the sample size, the point estimate for the population mean, the population standard deviation, and the critical value you need for your 90% confidence interval. (Choose the correct critical value from the table of critical values provided.) When you are done, select "Compute". 0.00 45 2.00 Sample mean Standard error: • Enter the lower and upper limits on the graph to show your confidence interval. . For the point (◆), enter the manufacturer's claim of 5.28 hours. 4.00 6.98 Margin of error: 90% confidence interval: Based on your sample, graph the 90% confidence interval for the population mean of the battery lifetimes for all phones of the manufacturer's latest model. 90% confidence interval: 5.00 6.00 Sample standard deviation 2.64 8.00 X Critical values 20.005 = 2.576 ²0.010 = 2.326 ²0.025 = 1.960 20.050 = 1.645 ²0.100 = 1.282 10.00 Population standard 10.00 deviation 2.73

Glencoe Algebra 1, Student Edition, 9780079039897, 0079039898, 2018
18th Edition
ISBN:9780079039897
Author:Carter
Publisher:Carter
Chapter10: Statistics
Section10.6: Summarizing Categorical Data
Problem 10CYU
icon
Related questions
Question
100%
S
Does the 90% confidence interval you constructed contradict the manufacturer's claim? Choose the best answer from the choices below.
O No, the confidence interval does not contradict the claim. The manufacturer's claim of 5.28 hours is inside the 90%
confidence interval.
O No, the confidence interval does not contradict the claim. The manufacturer's claim of 5.28 hours is outside the
90% confidence interval.
O Yes, the confidence interval contradicts the claim. The manufacturer's claim of 5.28 hours is inside the 90%
confidence interval.
O Yes, the confidence interval contradicts the claim. The manufacturer's claim of 5.28 hours is outside the 90%
confidence interval.
3
Transcribed Image Text:S Does the 90% confidence interval you constructed contradict the manufacturer's claim? Choose the best answer from the choices below. O No, the confidence interval does not contradict the claim. The manufacturer's claim of 5.28 hours is inside the 90% confidence interval. O No, the confidence interval does not contradict the claim. The manufacturer's claim of 5.28 hours is outside the 90% confidence interval. O Yes, the confidence interval contradicts the claim. The manufacturer's claim of 5.28 hours is inside the 90% confidence interval. O Yes, the confidence interval contradicts the claim. The manufacturer's claim of 5.28 hours is outside the 90% confidence interval. 3
A cell phone manufacturer tests the battery lifetimes of its cell phones by recording the time it takes for the battery charges to run out while testers are playing
games on the phones continuously. The manufacturer claims that the population mean of the battery lifetimes of all phones of their latest model is 5.28 hours.
As a researcher for a consumer information service, you want to test that claim. To do so, you select a random sample of 45 cell phones of the manufacturer's
latest model and record their battery lifetimes. Assume it is known that the population standard deviation of the battery lifetimes for that cell phone model is
2.73 hours.
Based on your sample, follow the steps below to construct a 90% confidence interval for the population mean of the battery lifetimes for all phones of the
manufacturer's latest model. Then state whether the confidence interval you construct contradicts the manufacturer's claim. (If necessary, consult a list of
formulas.)
(a) Click on "Take Sample" to see the results from your random sample of 45 phones of the manufacturer's latest model.
(b)
Take Sample
Sample size:
Point estimate:
0
Population standard deviation:
0
Critical value:
0
Compute
0.00
Number of phones
Enter the values of the sample size, the point estimate for the population mean, the population standard deviation, and the critical value you need
for your 90% confidence interval. (Choose the correct critical value from the table of critical values provided.) When you are done, select "Compute".
0.00
45
2.00
Sample mean
Standard error:
• Enter the lower and upper limits on the graph to show your confidence interval.
. For the point (◆), enter the manufacturer's claim of 5.28 hours.
4.00
6.98
Margin of error:
90% confidence interval:
Based on your sample, graph the 90% confidence interval for the population mean of the battery lifetimes for all
phones of the manufacturer's latest model.
90% confidence interval:
5.00
6.00
Sample standard
deviation
2.64
8.00
X
Critical values
20.005 = 2.576
²0.010 = 2.326
²0.025 = 1.960
20.050 = 1.645
²0.100 = 1.282
10.00
Population standard
10.00
deviation
2.73
Transcribed Image Text:A cell phone manufacturer tests the battery lifetimes of its cell phones by recording the time it takes for the battery charges to run out while testers are playing games on the phones continuously. The manufacturer claims that the population mean of the battery lifetimes of all phones of their latest model is 5.28 hours. As a researcher for a consumer information service, you want to test that claim. To do so, you select a random sample of 45 cell phones of the manufacturer's latest model and record their battery lifetimes. Assume it is known that the population standard deviation of the battery lifetimes for that cell phone model is 2.73 hours. Based on your sample, follow the steps below to construct a 90% confidence interval for the population mean of the battery lifetimes for all phones of the manufacturer's latest model. Then state whether the confidence interval you construct contradicts the manufacturer's claim. (If necessary, consult a list of formulas.) (a) Click on "Take Sample" to see the results from your random sample of 45 phones of the manufacturer's latest model. (b) Take Sample Sample size: Point estimate: 0 Population standard deviation: 0 Critical value: 0 Compute 0.00 Number of phones Enter the values of the sample size, the point estimate for the population mean, the population standard deviation, and the critical value you need for your 90% confidence interval. (Choose the correct critical value from the table of critical values provided.) When you are done, select "Compute". 0.00 45 2.00 Sample mean Standard error: • Enter the lower and upper limits on the graph to show your confidence interval. . For the point (◆), enter the manufacturer's claim of 5.28 hours. 4.00 6.98 Margin of error: 90% confidence interval: Based on your sample, graph the 90% confidence interval for the population mean of the battery lifetimes for all phones of the manufacturer's latest model. 90% confidence interval: 5.00 6.00 Sample standard deviation 2.64 8.00 X Critical values 20.005 = 2.576 ²0.010 = 2.326 ²0.025 = 1.960 20.050 = 1.645 ²0.100 = 1.282 10.00 Population standard 10.00 deviation 2.73
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Glencoe Algebra 1, Student Edition, 9780079039897…
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
Holt Mcdougal Larson Pre-algebra: Student Edition…
Holt Mcdougal Larson Pre-algebra: Student Edition…
Algebra
ISBN:
9780547587776
Author:
HOLT MCDOUGAL
Publisher:
HOLT MCDOUGAL
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt
College Algebra
College Algebra
Algebra
ISBN:
9781938168383
Author:
Jay Abramson
Publisher:
OpenStax