a) As an engineer, choose a desired fracture mode in metals with one (1) reason. b) Sketch the fracture behaviour in metals. c) i. The modulus of elasticity of a metal alloy A is 260 GPa. Compute the specific surface energy if propagation of an internal crack of length 0.40 mm is observed when a stress of 63 MPa is applied to the alloy.

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question
2.
a) As an engineer, choose a desired fracture mode in metals with one (1) reason.
b) Sketch the fracture behaviour in metals.
c)
i. The modulus of elasticity of a metal alloy A is 260 GPa. Compute the specific surface
energy if propagation of an internal crack of length 0.40 mm is observed when a stress
of 63 MPa is applied to the alloy.
ii. The elastic deformation energy of alloy A is 3.0 J/m². Based on the answer obtained in
c)(i), show whether alloy A is an elastic deformation or a plastic deformation.
iii. Interpret if alloy A can be classified as a brittle or a ductile material.
d)
i. A metal with an internal crack is loaded with a tensile stress of 15 MPa. If the crack
length and the radius of curvature are 2.6 x 10-2 mm and 1.1 x 10-4 mm, compute its
maximum stress.
ii. The modulus of elasticity of the metal is 90 GPa and the specific surface
energy is 2.6 J/m2. Based on its critical stress, show that the crack will not grow when
a tensile stress of 15 MPa is loaded on it.
Transcribed Image Text:2. a) As an engineer, choose a desired fracture mode in metals with one (1) reason. b) Sketch the fracture behaviour in metals. c) i. The modulus of elasticity of a metal alloy A is 260 GPa. Compute the specific surface energy if propagation of an internal crack of length 0.40 mm is observed when a stress of 63 MPa is applied to the alloy. ii. The elastic deformation energy of alloy A is 3.0 J/m². Based on the answer obtained in c)(i), show whether alloy A is an elastic deformation or a plastic deformation. iii. Interpret if alloy A can be classified as a brittle or a ductile material. d) i. A metal with an internal crack is loaded with a tensile stress of 15 MPa. If the crack length and the radius of curvature are 2.6 x 10-2 mm and 1.1 x 10-4 mm, compute its maximum stress. ii. The modulus of elasticity of the metal is 90 GPa and the specific surface energy is 2.6 J/m2. Based on its critical stress, show that the crack will not grow when a tensile stress of 15 MPa is loaded on it.
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Material Properties
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning