a) A control engineer has modelled the suspension system of a new model car using a 2nd order differential equation. Using Laplace Transform, the engineer has managed to work out the transfer function, which is given below: 0.001 s² + 12s+81 What is the natural frequency, the damping ratio and the constant K of the system? Please show all calculations. b) The same engineer has studied the suspension system of a SUV vehicle and modelled it using again a 2nd order differential equation, which has resulted into the following 2nd order transfer function: Y(s) 32 U(s) 4s² + 8s + 16 = For this system first calculate the damping ratio and its natural frequency and state whether the system is underdamped, overdamped or critically damped. Then calculate the peak time, peak value, settling time and damped natural frequency of the system.
a) A control engineer has modelled the suspension system of a new model car using a 2nd order differential equation. Using Laplace Transform, the engineer has managed to work out the transfer function, which is given below: 0.001 s² + 12s+81 What is the natural frequency, the damping ratio and the constant K of the system? Please show all calculations. b) The same engineer has studied the suspension system of a SUV vehicle and modelled it using again a 2nd order differential equation, which has resulted into the following 2nd order transfer function: Y(s) 32 U(s) 4s² + 8s + 16 = For this system first calculate the damping ratio and its natural frequency and state whether the system is underdamped, overdamped or critically damped. Then calculate the peak time, peak value, settling time and damped natural frequency of the system.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step 1: Define the given data and what is to determine?
VIEWStep 2: (1) Determine the natural frequency.
VIEWStep 3: (2) Determine the damping ratio.
VIEWStep 4: (3) Determine the constant K of the system.
VIEWStep 5: What is the given data and what is to find.
VIEWStep 6: Determine the damping ratio, natural frequency and which type of damping is.
VIEWStep 7: Calculate the damped natural frequency, peak time, peak value and settling time.
VIEWSolution
VIEWStep by step
Solved in 8 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY