A 6-pole synchronous motor has an armature impedance of 10 and a resistance of 0.5 ohm. When running on 2.000 volts, 25-Hz supply mains, its field excitation is such that the e.m.f. induced in the machine is 1600 V. Calculate the maximum total torque in N-m developed before the machine drops out of synchronism.
A 6-pole synchronous motor has an armature impedance of 10 and a resistance of 0.5 ohm. When running on 2.000 volts, 25-Hz supply mains, its field excitation is such that the e.m.f. induced in the machine is 1600 V. Calculate the maximum total torque in N-m developed before the machine drops out of synchronism.
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
A 6-pole synchronous motor has an armature impedance of 10 and a resistance of 0.5 ohm. When running on 2.000 volts, 25-Hz supply mains, its field excitation is such that the e.m.f. induced in the machine is 1600 V. Calculate the maximum total torque in N-m developed before the machine drops out of synchronism.
Expert Solution
Step 1
We have an 6-pole synchronous motor having,
Armature impedance (Zs) = 10 Ω
Resistance (Ra) = 0.5 Ω
Voltage (V) = 2 V
Supply frequency (f) = 25 Hz
Emf in armature (Eb) = 1600 V
we need to determine the maximum total torque in N-m.
For finding the maximum total torque we have,
Tg(max) = 9.55 *
So,
First we will need to determine the value of maximum power and synchronous speed.
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,