A 50.0-mL sample of 0.400 M copper(II) sulfate solution at 23.35oC is mixed with 50.0 mL of 0.600 M sodium hydroxide solution, also at 23.35oC, in a coffee-cup calorimeter. After the reaction occurs, the temperature of the resulting mixture is measured to be 25.23 degree Celsius . The density of the final solution is 1.02 g/mL. Calculate the amount of heat evolved. Assume that the specific heat of the solution is the same as that of pure water. (Note the calorimeter constant from the first example.) In addition, calculate the amount of heat produced per mol NaOH
Thermochemistry
Thermochemistry can be considered as a branch of thermodynamics that deals with the connections between warmth, work, and various types of energy, formed because of different synthetic and actual cycles. Thermochemistry describes the energy changes that occur as a result of reactions or chemical changes in a substance.
Exergonic Reaction
The term exergonic is derived from the Greek word in which ‘ergon’ means work and exergonic means ‘work outside’. Exergonic reactions releases work energy. Exergonic reactions are different from exothermic reactions, the one that releases only heat energy during the course of the reaction. So, exothermic reaction is one type of exergonic reaction. Exergonic reaction releases work energy in different forms like heat, light or sound. For example, a glow stick releases light making that an exergonic reaction and not an exothermic reaction since no heat is released. Even endothermic reactions at very high temperature are exergonic.


Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images









