1. Magnesium solid reacts with aqueous hydrochloric acid to form the Mg2+ ion in solution. In an experiment, 60.0 mL of aqueous HCl was mixed with 0.1297 g of magnesium solid in a double Styrofoam cup calorimeter. The reaction caused the temperature of the substances in the calorimeter to rise 10.02°C. Assume the density and specific heat of the HCl solution is that of water, 1.00 g/mL and 4.184 J/g °C, respectively. The specific heat of magnesium is 1.02 J/g °C. a. Write the balanced chemical equation for this reaction. b. Calculate the heat of this reaction, AHrxn, in kJ. c. Calculate the heat of this reaction per mole of Mg2+ formed, AHxn/mole Mg²+. d. The literature value of this reaction is -466.85 kJ/mole. Calculate the percent deviation of the experimental value from the literature value.

Chemistry: The Molecular Science
5th Edition
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:John W. Moore, Conrad L. Stanitski
Chapter4: Energy And Chemical Reactions
Section4.8: Measuring Reaction Enthalpies: Calorimetry
Problem 4.17E
icon
Related questions
Question
1. Magnesium solid reacts with aqueous hydrochloric acid to form the Mg2+ ion in
solution. In an experiment, 60.0 mL of aqueous HCl was mixed with 0.1297 g of
magnesium solid in a double Styrofoam cup calorimeter. The reaction caused the
temperature of the substances in the calorimeter to rise 10.02°C. Assume the density
and specific heat of the HCl solution is that of water, 1.00 g/mL and 4.184 J/g °C,
respectively. The specific heat of magnesium is 1.02 J/g °C.
a. Write the balanced chemical equation for this reaction.
b. Calculate the heat of this reaction, AHrxn, in kJ.
c. Calculate the heat of this reaction per mole of Mg2+ formed, AHxn/mole Mg²+.
d. The literature value of this reaction is -466.85 kJ/mole. Calculate the percent
deviation of the experimental value from the literature value.
Transcribed Image Text:1. Magnesium solid reacts with aqueous hydrochloric acid to form the Mg2+ ion in solution. In an experiment, 60.0 mL of aqueous HCl was mixed with 0.1297 g of magnesium solid in a double Styrofoam cup calorimeter. The reaction caused the temperature of the substances in the calorimeter to rise 10.02°C. Assume the density and specific heat of the HCl solution is that of water, 1.00 g/mL and 4.184 J/g °C, respectively. The specific heat of magnesium is 1.02 J/g °C. a. Write the balanced chemical equation for this reaction. b. Calculate the heat of this reaction, AHrxn, in kJ. c. Calculate the heat of this reaction per mole of Mg2+ formed, AHxn/mole Mg²+. d. The literature value of this reaction is -466.85 kJ/mole. Calculate the percent deviation of the experimental value from the literature value.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781285199023
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning
Chemistry: Principles and Practice
Chemistry: Principles and Practice
Chemistry
ISBN:
9780534420123
Author:
Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:
9781938168390
Author:
Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:
OpenStax