A 34.8 kg child is sitting at the top of a slide, which is inclined at an angle of 55 degrees with respect to the horizontal. Someone gives the child a quick push to get them moving, after which they slide down the incline without any further assistance. The coefficient of kinetic friction between the child and the slide is μ s = 0.44. What is the magnitude of the acceleration (in m/s2) of the child?
A 34.8 kg child is sitting at the top of a slide, which is inclined at an angle of 55 degrees with respect to the horizontal. Someone gives the child a quick push to get them moving, after which they slide down the incline without any further assistance. The coefficient of kinetic friction between the child and the slide is μ s = 0.44. What is the magnitude of the acceleration (in m/s2) of the child?
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter4: The Laws Of Motion
Section: Chapter Questions
Problem 33P: Two blocks, each of mass m = 3.50 kg, are hung from the ceiling of an elevator as in Figure P4.33....
Related questions
Topic Video
Question
A 34.8 kg child is sitting at the top of a slide, which is inclined at an angle of 55 degrees with respect to the horizontal. Someone gives the child a quick push to get them moving, after which they slide down the incline without any further assistance. The coefficient of kinetic friction between the child and the slide is μ s = 0.44. What is the magnitude of the acceleration (in m/s2) of the child?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 6 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning

Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning

Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning