A 10 m long thin-walled stainless steel tube of diameter 15 mm is used to sterilize pharmaceutical products by heating it from 25 °C to 85 °C. A uniform heat flux is maintained on the outer surface of the tube by an electric resistance heater wrapped around it. If the flow rate of the liquid is 0.15 m/s, find the required heat flux. Is the flow in the tube laminar or turbulent? Assuming the fluid exits the tube with a fully developed velocity and temperature profile, determine the tube surface temperature at the exit. Explain the reasoning for assuming that the flow is fully developed.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A 10 m long thin-walled stainless steel tube of diameter 15 mm is used to
sterilize pharmaceutical products by heating it from 25 °C to 85 °C. A
uniform heat flux is maintained on the outer surface of the tube by an
electric resistance heater wrapped around it. If the flow rate of the liquid
is 0.15 m/s, find the required heat flux. Is the flow in the tube laminar or
turbulent? Assuming the fluid exits the tube with a fully developed
velocity and temperature profile, determine the tube surface temperature at
the exit.
Explain the reasoning for assuming that the flow is fully developed.
Transcribed Image Text:A 10 m long thin-walled stainless steel tube of diameter 15 mm is used to sterilize pharmaceutical products by heating it from 25 °C to 85 °C. A uniform heat flux is maintained on the outer surface of the tube by an electric resistance heater wrapped around it. If the flow rate of the liquid is 0.15 m/s, find the required heat flux. Is the flow in the tube laminar or turbulent? Assuming the fluid exits the tube with a fully developed velocity and temperature profile, determine the tube surface temperature at the exit. Explain the reasoning for assuming that the flow is fully developed.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY