A 1.0 m radius cylindrical industrial tank filled with viscous oil to a level at a height h from its base, must be drained through a tube with a radius of 0.2 m and length L, connected to its base. The speed profile of oil in the drain tube can be described by the equation below. Where v is the oil speed, vmax is a = maximum oil speed, r is the radius, and R is the tube radius. Considering this problem situation, do what is asked in the following items, justifying your answers. a) What is the volume, in liters, of oil removed from the tank after 10 seconds, if the maximum discharge speed does the oil reach 0.35 m/s? Data: π ≈ 22/7; 1 m3 = 1000 L. b) What flow regime does the system operate? Demonstrate. Data: specific mass of oil = 800 kg/m3, specific mass of water = 1000 kg/m3, oil viscosity = 0.056 Pa.s e viscosity of water = 0.001 Pa.s.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

A 1.0 m radius cylindrical industrial tank filled with viscous oil to a level at a height h from its base, must be drained through a tube with a radius of 0.2 m and length L, connected to its base. The speed profile of oil in the drain tube can be described by the equation below. Where v is the oil speed, vmax is a = maximum oil speed, r is the radius, and R is the tube radius. Considering this problem situation, do what is asked in the following items, justifying your answers. a) What is the volume, in liters, of oil removed from the tank after 10 seconds, if the maximum discharge speed does the oil reach 0.35 m/s? Data: π ≈ 22/7; 1 m3 = 1000 L. b) What flow regime does the system operate? Demonstrate. Data: specific mass of oil = 800 kg/m3, specific mass of water = 1000 kg/m3, oil viscosity = 0.056 Pa.s e viscosity of water = 0.001 Pa.s.

A 1.0 m radius cylindrical industrial tank filled with viscous oil to a level at a height h from its
base, must be drained through a tube with a radius of 0.2 m and length L, connected to its base. The speed profile
of oil in the drain tube can be described by the equation below.
Where v is the oil speed, vmax is a = maximum oil speed, r is the radius, and R is the tube radius.
Considering this problem situation, do what is asked in the following items, justifying your answers.
a) What is the volume, in liters, of oil removed from the tank after 10 seconds, if the maximum discharge speed
does the oil reach 0.35 m/s? Data: TT 22/7; 1 m3 = 1000 L.
b) What flow regime does the system operate? Demonstrate.
Data: specific mass of oil = 800 kg/m3, specific mass of water = 1000 kg/m3, oil viscosity = 0.056 Pa.s e
viscosity of water = 0.001 Pa.s.
v = Vmax 1
|
Transcribed Image Text:A 1.0 m radius cylindrical industrial tank filled with viscous oil to a level at a height h from its base, must be drained through a tube with a radius of 0.2 m and length L, connected to its base. The speed profile of oil in the drain tube can be described by the equation below. Where v is the oil speed, vmax is a = maximum oil speed, r is the radius, and R is the tube radius. Considering this problem situation, do what is asked in the following items, justifying your answers. a) What is the volume, in liters, of oil removed from the tank after 10 seconds, if the maximum discharge speed does the oil reach 0.35 m/s? Data: TT 22/7; 1 m3 = 1000 L. b) What flow regime does the system operate? Demonstrate. Data: specific mass of oil = 800 kg/m3, specific mass of water = 1000 kg/m3, oil viscosity = 0.056 Pa.s e viscosity of water = 0.001 Pa.s. v = Vmax 1 |
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Properties of Fluids
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY