A 0.40 kg block can slide up and down a rough 10-m-high, 30-m-long slope. At the bottom, a stiff spring with spring constant 800 N/m is compressed 0.50 m and used to launch the block up the slope. The friction force on the block from the slope is 1.2 N. What is the speed of the block when it reaches the top of the slope? When apply the following energy principle to this question, assuming the system is block+earth+spring+slope, which of the energy term is positive? Select all apply. AK + AUg + AUsp + AEth + AEch = Wexternal Γ ΔΚ AUG AUsp AEth

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Topic Video
Question
A 0.40 kg block can slide up and down a rough 10-m-high, 30-m-long slope. At the bottom, a stiff spring with spring constant 800 N/m is compressed 0.50 m and used to launch the block up the slope. The friction
force on the block from the slope is 1.2 N. What is the speed of the block when it reaches the top of the slope, in m/s? Use g = 10 m/s².
Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in
the question statement.
Transcribed Image Text:A 0.40 kg block can slide up and down a rough 10-m-high, 30-m-long slope. At the bottom, a stiff spring with spring constant 800 N/m is compressed 0.50 m and used to launch the block up the slope. The friction force on the block from the slope is 1.2 N. What is the speed of the block when it reaches the top of the slope, in m/s? Use g = 10 m/s². Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.
A 0.40 kg block can slide up and down a rough 10-m-high, 30-m-long slope. At the bottom, a stiff spring with spring constant 800 N/m is compressed 0.50 m and used to launch the block up the slope. The friction
force on the block from the slope is 1.2 N. What is the speed of the block when it reaches the top of the slope?
When apply the following energy principle to this question, assuming the system is block+earth+spring+slope, which of the energy term is positive? Select all apply.
AK + AUg + AUsp + AEth + AEch = Wexternal
AK
0
0
AUg
AU sp
ΔΕth
Transcribed Image Text:A 0.40 kg block can slide up and down a rough 10-m-high, 30-m-long slope. At the bottom, a stiff spring with spring constant 800 N/m is compressed 0.50 m and used to launch the block up the slope. The friction force on the block from the slope is 1.2 N. What is the speed of the block when it reaches the top of the slope? When apply the following energy principle to this question, assuming the system is block+earth+spring+slope, which of the energy term is positive? Select all apply. AK + AUg + AUsp + AEth + AEch = Wexternal AK 0 0 AUg AU sp ΔΕth
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Kinetic energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON