8 (L{Lun(t)}) = 8 (sm L{un(t)} – sm-¹un (0) - ... -u (m-1) ( = s™ 8 (L{un(t)}). Therefore, we get (0)) L{λ(t)} sm Therefore, we have the following iteration algorithm: 1 (m). L{un+1(t)} = L{un(t)} - L{L(m³ un(t) + R un(t) + N un(t) − 9 ; g(t)} sm (m). - = L{un(t)}-{Lun(t)}- L{Run(t) + Nun(t) − g(t)} = L{un(t)} - - sm sm sm (sm L{un(t)}-sm-un (0) L{Run(t) + Nun(t) − g(t)} -um-1) (0)) · + (0) %/n 2 + (0) ³n == ամ 1 (m-1) + sm Un '(0) - 1 sm L{Run(t) + Nun(t) − g(t)} Finally, the approximate solution is given by u(x,t) = lim un(x,t) 12-00 to solve the following partial differential equations: E u₁+uuxuxx, u(x, 0) = x, 00 00

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter1: Fundamental Concepts Of Algebra
Section1.3: Algebraic Expressions
Problem 5E
icon
Related questions
Question
This picture shows the simplifying steps of how to derive the Laplace variational lteration method with the same steps and the same method. Please derive the Elzaki variational lteration method. and then solve the equation below in this new way.
8 (L{Lun(t)}) = 8 (sm L{un(t)} – sm-¹un (0) - ... -u (m-1) (
= s™ 8 (L{un(t)}).
Therefore, we get
(0))
L{λ(t)}
sm
Therefore, we have the following iteration algorithm:
1
(m).
L{un+1(t)} = L{un(t)} - L{L(m³ un(t) + R un(t) + N un(t) − 9
; g(t)}
sm
(m).
-
= L{un(t)}-{Lun(t)}- L{Run(t) + Nun(t) − g(t)}
= L{un(t)}
-
-
sm
sm
sm
(sm L{un(t)}-sm-un (0)
L{Run(t) + Nun(t) − g(t)}
-um-1) (0))
· + (0) %/n 2 + (0) ³n ==
ամ
1
(m-1)
+
sm
Un
'(0)
-
1
sm
L{Run(t) + Nun(t) − g(t)}
Finally, the approximate solution is given by
u(x,t) = lim un(x,t)
12-00
to solve the following partial differential equations:
E
u₁+uuxuxx, u(x, 0) = x,
00
00
Transcribed Image Text:8 (L{Lun(t)}) = 8 (sm L{un(t)} – sm-¹un (0) - ... -u (m-1) ( = s™ 8 (L{un(t)}). Therefore, we get (0)) L{λ(t)} sm Therefore, we have the following iteration algorithm: 1 (m). L{un+1(t)} = L{un(t)} - L{L(m³ un(t) + R un(t) + N un(t) − 9 ; g(t)} sm (m). - = L{un(t)}-{Lun(t)}- L{Run(t) + Nun(t) − g(t)} = L{un(t)} - - sm sm sm (sm L{un(t)}-sm-un (0) L{Run(t) + Nun(t) − g(t)} -um-1) (0)) · + (0) %/n 2 + (0) ³n == ամ 1 (m-1) + sm Un '(0) - 1 sm L{Run(t) + Nun(t) − g(t)} Finally, the approximate solution is given by u(x,t) = lim un(x,t) 12-00 to solve the following partial differential equations: E u₁+uuxuxx, u(x, 0) = x, 00 00
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
College Algebra
College Algebra
Algebra
ISBN:
9781305115545
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning