8 (L{Lun(t)}) = 8 (sm L{un(t)} – sm-¹un (0) - ... -u (m-1) ( = s™ 8 (L{un(t)}). Therefore, we get (0)) L{λ(t)} sm Therefore, we have the following iteration algorithm: 1 (m). L{un+1(t)} = L{un(t)} - L{L(m³ un(t) + R un(t) + N un(t) − 9 ; g(t)} sm (m). - = L{un(t)}-{Lun(t)}- L{Run(t) + Nun(t) − g(t)} = L{un(t)} - - sm sm sm (sm L{un(t)}-sm-un (0) L{Run(t) + Nun(t) − g(t)} -um-1) (0)) · + (0) %/n 2 + (0) ³n == ամ 1 (m-1) + sm Un '(0) - 1 sm L{Run(t) + Nun(t) − g(t)} Finally, the approximate solution is given by u(x,t) = lim un(x,t) 12-00 to solve the following partial differential equations: E u₁+uuxuxx, u(x, 0) = x, 00 00

Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter2: Systems Of Linear Equations
Section2.2: Direct Methods For Solving Linear Systems
Problem 3CEXP
icon
Related questions
Question
This picture shows the simplifying steps of how to derive the Laplace variational lteration method with the same steps and the same method. Please derive the Elzaki variational lteration method. and then solve the equation below in this new way.
8 (L{Lun(t)}) = 8 (sm L{un(t)} – sm-¹un (0) - ... -u (m-1) (
= s™ 8 (L{un(t)}).
Therefore, we get
(0))
L{λ(t)}
sm
Therefore, we have the following iteration algorithm:
1
(m).
L{un+1(t)} = L{un(t)} - L{L(m³ un(t) + R un(t) + N un(t) − 9
; g(t)}
sm
(m).
-
= L{un(t)}-{Lun(t)}- L{Run(t) + Nun(t) − g(t)}
= L{un(t)}
-
-
sm
sm
sm
(sm L{un(t)}-sm-un (0)
L{Run(t) + Nun(t) − g(t)}
-um-1) (0))
· + (0) %/n 2 + (0) ³n ==
ամ
1
(m-1)
+
sm
Un
'(0)
-
1
sm
L{Run(t) + Nun(t) − g(t)}
Finally, the approximate solution is given by
u(x,t) = lim un(x,t)
12-00
to solve the following partial differential equations:
E
u₁+uuxuxx, u(x, 0) = x,
00
00
Transcribed Image Text:8 (L{Lun(t)}) = 8 (sm L{un(t)} – sm-¹un (0) - ... -u (m-1) ( = s™ 8 (L{un(t)}). Therefore, we get (0)) L{λ(t)} sm Therefore, we have the following iteration algorithm: 1 (m). L{un+1(t)} = L{un(t)} - L{L(m³ un(t) + R un(t) + N un(t) − 9 ; g(t)} sm (m). - = L{un(t)}-{Lun(t)}- L{Run(t) + Nun(t) − g(t)} = L{un(t)} - - sm sm sm (sm L{un(t)}-sm-un (0) L{Run(t) + Nun(t) − g(t)} -um-1) (0)) · + (0) %/n 2 + (0) ³n == ամ 1 (m-1) + sm Un '(0) - 1 sm L{Run(t) + Nun(t) − g(t)} Finally, the approximate solution is given by u(x,t) = lim un(x,t) 12-00 to solve the following partial differential equations: E u₁+uuxuxx, u(x, 0) = x, 00 00
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
College Algebra
College Algebra
Algebra
ISBN:
9781305115545
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning