5. The rigid bar is supported by a smooth pin and two rods as shown. Neglect the weight of the rigid bar. The assembly is initially stress-free. Determine the stress in each rod if the temperature increases by 25°C after a load W = 100 kN is applied. The steel rod has an area of 320 mm² with a = 11.7 µm/ (m°C) and E = 200 GPa. For the bronze rod, it has an area of 1380 mm² with a = 18.9 μm/ (m°C) and E = 83 GPa. Bronze 3 m Steel 1.5 m 1.0 m 2.5 m O W -1.5 m

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
5. The rigid bar is supported by a smooth pin and two rods as shown. Neglect the weight of the rigid bar.
The assembly is initially stress-free. Determine the stress in each rod if the temperature increases by 25°C
after a load W = 100 kN is applied. The steel rod has an area of 320 mm² with a = 11.7 µm/ (m°C) and E
= 200 GPa. For the bronze rod, it has an area of 1380 mm² with a = 18.9 μm/ ( mºC) and E = 83 GPa.
Bronze 3 m
Steel 1.5 m
1.0 m -
O
k
2.5 m
1.5 m
W
6. Three wires are used to support the 150-lb force. The wires AB and AC are made of steel, and wire AD
is made of copper. Assume that the three wires have constant cross-sectional area A = 0.0123 in². For
steel wire, a = 8 x 106 in/ (inºF) and E = 29000 ksi and for copper wire, a = 9.6 x 10-6 in/ (inºF) and E =
17000 ksi. Calculate the axial force exerted by the three wires if the temperature is raised by 80°F.
Answer: Pst = 10 lb, Pcu = 136 lb
B
D
40 in.
60 in.
45°-45°
60 in.
A
150 lb
Transcribed Image Text:5. The rigid bar is supported by a smooth pin and two rods as shown. Neglect the weight of the rigid bar. The assembly is initially stress-free. Determine the stress in each rod if the temperature increases by 25°C after a load W = 100 kN is applied. The steel rod has an area of 320 mm² with a = 11.7 µm/ (m°C) and E = 200 GPa. For the bronze rod, it has an area of 1380 mm² with a = 18.9 μm/ ( mºC) and E = 83 GPa. Bronze 3 m Steel 1.5 m 1.0 m - O k 2.5 m 1.5 m W 6. Three wires are used to support the 150-lb force. The wires AB and AC are made of steel, and wire AD is made of copper. Assume that the three wires have constant cross-sectional area A = 0.0123 in². For steel wire, a = 8 x 106 in/ (inºF) and E = 29000 ksi and for copper wire, a = 9.6 x 10-6 in/ (inºF) and E = 17000 ksi. Calculate the axial force exerted by the three wires if the temperature is raised by 80°F. Answer: Pst = 10 lb, Pcu = 136 lb B D 40 in. 60 in. 45°-45° 60 in. A 150 lb
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Theories of Failure
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY