34. A football fan from XJTLU conducted the following analysis for the local Tiger footba team. He randomly selected a sample of 15 games from the last five seasons. He interested to know if the number of fans at each game may affect the number of poin Tiger scores. The output from his analysis is below: (? in the table denotes the missin information.) Model Summary R Square ? a. Predictors: (Constant), Attendance at Game Model 1 Model 1 Regression Residual Total R .601ª Model 1 (Constant) Sum of Squares 935.265 1570.235 Attendance at Game ANOVAª df 1 13 ? a. Dependent Variable: Points Tiger Scored b. Predictors: (Constant), Attendance at Game Coefficients B 54.158 -0.000388 Adjusted R Square .312 Mean Square ? ? Unstandardized Coefficients Std. Error 10.414 .000 a. Dependent Variable: Points Tiger Scored Standardized Coefficients Beta -0.604 Std. Error of the Estimate 11.573 F 7.744 Sig. .018b t Sig .000 5.200 -2.699.018 a) What is the equation of the least-squares regression line for the number of points scored? Interpret the intercept and slope of the least-squares regression line. b) Specify the value for the sum of squares total, degrees of freedom total, mean square model and mean square error respectively.
34. A football fan from XJTLU conducted the following analysis for the local Tiger footba team. He randomly selected a sample of 15 games from the last five seasons. He interested to know if the number of fans at each game may affect the number of poin Tiger scores. The output from his analysis is below: (? in the table denotes the missin information.) Model Summary R Square ? a. Predictors: (Constant), Attendance at Game Model 1 Model 1 Regression Residual Total R .601ª Model 1 (Constant) Sum of Squares 935.265 1570.235 Attendance at Game ANOVAª df 1 13 ? a. Dependent Variable: Points Tiger Scored b. Predictors: (Constant), Attendance at Game Coefficients B 54.158 -0.000388 Adjusted R Square .312 Mean Square ? ? Unstandardized Coefficients Std. Error 10.414 .000 a. Dependent Variable: Points Tiger Scored Standardized Coefficients Beta -0.604 Std. Error of the Estimate 11.573 F 7.744 Sig. .018b t Sig .000 5.200 -2.699.018 a) What is the equation of the least-squares regression line for the number of points scored? Interpret the intercept and slope of the least-squares regression line. b) Specify the value for the sum of squares total, degrees of freedom total, mean square model and mean square error respectively.
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
![B4. A football fan from XJTLU conducted the following analysis for the local Tiger football
team. He randomly selected a sample of 15 games from the last five seasons. He is
interested to know if the number of fans at each game may affect the number of points
Tiger scores. The output from his analysis is below: (? in the table denotes the missing
information.)
Model Summary
R Square
?
a. Predictors: (Constant), Attendance at Game
Model
Model
1
Regression
Residual
Total
R
.601a
Model
1 (Constant)
Sum of
Squares
935.265
1570.235
Attendance at Game
ANOVA
df
1
13
?
?
a. Dependent Variable: Points Tiger Scored
b. Predictors: (Constant), Attendance at Game
B
54.158
-0.000388
Mean Square
?
Adjusted R
Square
.312
Unstandardized Coefficients
Std. Error
10.414
.000
a. Dependent Variable: Points Tiger Scored
Coefficients a
Standardized
Coefficients
Beta
-0.604
Std. Error of
the Estimate
11.573
F
7.744
Sig.
.018b
t
Sig.
5.200 .000
-2.699 .018
a) What is the equation of the least-squares regression line for the number of points scored?
Interpret the intercept and slope of the least-squares regression line.
b) Specify the value for the sum of squares total, degrees of freedom total, mean square
model and mean square error respectively.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F18a59f0a-7c8f-49a1-8487-9703585f340d%2F35434451-8e24-4334-9270-7715e5aeecf3%2Fn8ubuk_processed.png&w=3840&q=75)
Transcribed Image Text:B4. A football fan from XJTLU conducted the following analysis for the local Tiger football
team. He randomly selected a sample of 15 games from the last five seasons. He is
interested to know if the number of fans at each game may affect the number of points
Tiger scores. The output from his analysis is below: (? in the table denotes the missing
information.)
Model Summary
R Square
?
a. Predictors: (Constant), Attendance at Game
Model
Model
1
Regression
Residual
Total
R
.601a
Model
1 (Constant)
Sum of
Squares
935.265
1570.235
Attendance at Game
ANOVA
df
1
13
?
?
a. Dependent Variable: Points Tiger Scored
b. Predictors: (Constant), Attendance at Game
B
54.158
-0.000388
Mean Square
?
Adjusted R
Square
.312
Unstandardized Coefficients
Std. Error
10.414
.000
a. Dependent Variable: Points Tiger Scored
Coefficients a
Standardized
Coefficients
Beta
-0.604
Std. Error of
the Estimate
11.573
F
7.744
Sig.
.018b
t
Sig.
5.200 .000
-2.699 .018
a) What is the equation of the least-squares regression line for the number of points scored?
Interpret the intercept and slope of the least-squares regression line.
b) Specify the value for the sum of squares total, degrees of freedom total, mean square
model and mean square error respectively.
![0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
TABLE A Standard Normal probabilities (continued)
.01
.02
.5040
.5080
5438
5478
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
TABLE B Random digits
Line
101
102
143
144
145
146
147
148
Table entry for z is the area under
the standard Normal curve to the
left of z.
149
150
TABLE D
.00
.5000
.5398
.5793
.6179
.6554
.6915
.7257
.7580
7881
.8159
.8413
.8643
.8849
.9032
.9192
.9332
.9452
.9554
.9641
9713
9772
.9821
.9861
9893
.9918
.9938
.9953
.9965
9974
9981
9987
9990
9993
.9995
9997
19223
73676
45467
52711
95592
68417
82739
60940
36009
38448
81486
59636
62568
45149
61041
14459
38167
73190
95857
35476
71487
13873
54580
71035
96746
96927
43909
15689
36759
69051
05007
68732
45740
27816
66925
08421
53645
66831
55588
12975
96767
72829
88565
62964
5832
.6217
.6591
19687
37609
54973
00694
71546
07511
.6950
.7291
.7611
.7910
.8186
.8438
.8665
.8869
.9049
.9207
9345
.9463
.9564
9649
.9719
.9778
9826
9864
9896
.9920
.9940
.9955
.9966
.9975
.9982
9987
.9991
.9993
.9995
9997
95034
47150
71709
38889
94007
35013
57890
72024
df
1
2 0.816 1.061
19365
48789
69487
88804
70206
32992
77684
26056
98532
32533
07118
55972
09984
81598
81507
09001
12149
19931
99477
14227
58984
64817
16632
55259
41807
78416
19
0.688 0.861
20 0.687 0.860
21 0.686 0.859
55658
44753
66812
68908
99404
13258
35964
50232
42628
88145
12633
59057
86278
05977
05233
88915
5871
.6255
.6628
.6985
.7324
.7642
7939
.8212
.8461
.8686
.8888
.9066
9222
9357
.9474
.9573
.9656
.9726
9783
.9830
9868
25
.20
.15
1.000 1.376 1.963
.9898
.9922
9941
.9956
.9967
.9976
9982
t distribution critical values
9987
.9991
.9994
.9995
.9997
.03
.5120
.5517
.5910
.6293
Table entry for p and C is the
critical value t* with probability p
lying to its right and probability C
lying between -t" and t".
.6664
.7019
.7357
.7673
.7967
8238
.8485
.8708
.8907
.9082
.9236
.9370
.9484
.9582
9664
9732
9788
9834
9871
.9901
.9925
.9943
.9957
.9968
.9977
.9983
.9988
.9991
9994
.9996
.9997
05756
99400
77558
93074
69971
15529
20807
17868
15412
18338
60513
04634
40325
75730
94322
31424
62183
04470
87664
39421
29077
95052
27102
43367
37823
36089
25330
06565
68288
87174
81194
84292
65561
18329
39100
77377
61421
40772
70708
13048
23822
97892
17797
83083
57857
66967
88737
19664
53946
41267
Probability
.04
5160
.5557
.5948
.6331
.6700
.7054
.7389
.7704
.7995
.8264
8508
.8729
.8925
.9099
.9251
.9382
.9495
.9591
.9671
9738
9793
9838
.9875
.9904
9927
.9945
.9959
.9969
9977
.9984
9988
.9992
.9994
.9996
.9997
28713
01927
00095
60227
91481
72765
47511
24943
39638
24697
09297
71197
03699
66280
24709
80371
70632
29669
92099
65850
14863
90908
56027
49497
71868
74192
64359
14374
22913
09517
14873
08796
33302
21337
78458
28744
47836
21558
41098
45144
96012
63408
49376
69453
95806
83401
74351
65441
68743
16853
.05
5199
5596
5987
.6368
.6736
.7088
.7422
.7734
.8023
.8289
.8531
.8749
.8944
.9115
.9265
.9394
.9505
.9599
.9678
9744
9798
.9842
9878
.9906
.9929
9946
.9960
.9970
9978
.9984
.9989
.9992
9994
.9996
9997
1.042 1.290 1.660 1.984
1.037 1.282 1.646 1.962 2.056
1.036
1.282 1.645
90%
1.960 2.054
95% 96%
70%
80%
Confidence level C
96409
27754
32863
40011
60779
85089
81676
61790
85453
39364
00412
19352
71080
03819
73698
65103
23417
84407
58806
04266
61683
73592
55892
72719
18442
77567
40085
13352
18638
84534
04197
43165
07051
35213
11206
75592
12609
47781
43563
72321
94591
77919
61762
46109
09931
60705
47500
20903
72460
84569
.06
.5239
.5636
.6026
.6406
.6772
.7123
.7454
.7764
.8051
.8315
.8554
.8770
.8962
.9131
.9279
.9406
.9515
9608
.9686
.9750
.9803
9846
9881
.9909
.9931
.9948
.9961
.9971
.9979
.9985
9989
.9992
.9994
.9996
9997
12531
42648
29485
85848
53791
57067
55300
90656
46816
42006
71238
73089
22553
56202
14526
62253
26185
90785
66979
35435
47052
75186
33063
96758
35119
88741
16925
49367
54303
06489
85576
93739
93623
37741
19876
08563
15373
33586
56934
81940
65194
44575
16953
59505
02150
02384
84552
62371
27601
79367
.07
5279
.5675
.6064
.6443
.6808
.7157
7486
.7794
.8078
.7823
.8106
.8365
.8599
.8810
.8997
.9162
9306
.9429
.9535
.9625
.9699
.9756 .9761
.9808
.9812
.9850
9854
.9884
9887
9911
9913
.9934
.9951
.9963
.9973
.9980
.8340
.8577
.8790
.8980
.9147
.9292
9418
.9525
.9616
9693
.9932
.9949
.9962
.9972
.9979
9985
.9989
.9992
.9995
9996
9997
.08
.5319
5714
.6103
.6480
.6844
.7190
7517
42544
82425
82226
48767
.9986
.9990
9993
.9995
9996
.9997
17297
50211
94383
87964
83485
76688
27649
84898
11486
02938
31893
50490
41448
65956
98624
43742
62224
87136
41842
27611
62103
48409
85117
81982
00795
87201
45195
31685
Upper-tail probability p
.01
.005 .0025 .001 .0005
.10 .05 .025 .02
3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
1.386 1.886 2.920 4.303 4.849 6.965 9925 14.09 22.33
3 0.765 0.978
4 0.741 0.941
1.250 1.638 2.353
1.190
1.156
5 0.727 0.920
1.533 2.132
1.476 2.015
1.440 1.943
1.415 1.895
6 0.718 0.906 1.134
7 0.711 0.896 1.119
3.182 3.482 4.541 5.841 7.453 10.21 12.92
2.776 2.999 3.747 4.604 5.598 7.173 8.610
2.571 2.757 3.365 4.032 4.773 5.893 6.869
2.447 2.612 3.143 3.707 4.317 5.208 5.959
2.365 2.517 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821
1.372 1.812 2.228 2.359 2.764
1.363 1.796 2.201 2.328 2.718
1.356 1.782 2.179 2.303 2.681
1 350 1.771 2.160 2.282 2.650
1.345 1.761 2.145 2.264 2.624
1.341 1.753 2.131 2.249 2.602
10 0.700 0.879 1.093
11 0.697 0.876 1.088
12 0.695 0.873 1.083
13 0.694 0.870 1.079
14 0.692 0.868 1.076
15 0.691 0.866 1.074
16 0.690 0.865 1.071
3.250 3.690 4.297 4.781
3.169 3.581 4.144 4.587
3.106 3.497 4.025 4.437
3.055 3.428 3.930 4.318
3012 3.372 3.852 4.221
2.977 3.326 3.787 4.140
2.947 3.286 3.733 4.073
1.337 1.746 2.120 2.235 2.583
2.921 3.252 3.686 4.015
17 0.689 0.863 1.069
18 0.688 0.862 1.067
18132
04312
87151
Probability p
79140
98481
79177
48394
00360
50842
24870
88604
69680
43163
90597
19909
22725
45403
32337
1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
1.330 1.734 2.101 2.214 2.552
1.323 1.721
1.321 1.717
23 0.685 0.858 1.060 1.319 1.714
24 0.685 0.857 1.059
25 0.684 0.856 1.058
26 0.684 0.856 1.058
27 0.684 0.855 1.057
0.683 0.855 1.056
2.878 3.197 3.611 3.922
1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
1.064
1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850
1.063
2.080 2.189 2.518 2.831 3.135 3.527 3.819
22 0.686 0.858 1.061
2.074 2.183 2.508 2.819 3.119 3.505 3.792
2,069 2.177 2.500 2.807 3.104 3.485 3.768
1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690
1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659
1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646
1.303 1.684 2.021 2.123 2.423 2.704
1299 1.676 2009 2.109 2.403 2678
28
29 0.683 0.854 1.055
30 0.683 0.854
40
0.681 0.851 1.050
50 0.679 0.849 1.047
60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390
80 0.678 0.846 1.043 1.292 1.664
100 0.677 0.845
1000 0.675 0.842
2* 0.674 0.841
50% 60%
2.971 3.307
2937 3261
2.660 2.915 3.232
1.990 2.088 2.374 2.639 2.887 3.195
2.081 2.364 2.626 2.871 3.174
3.551
3.496
3.460
3.416
3.390
3 300
2.330 2 581 2.813 3.098
2.326
2.576 2.807 3.091 3.291
98%
99%
99.5% 99.8% 99.9%
.09
.5359
.5753
.6141
.6517
.6879
.7224
.7549
7852
.8133
.8389
.8621
.8830
9015
.9177
.9319
.9441
9545
9633
.9706
9767
.9817
9857
.9890
.9916
.9936
.9952
9964
.9974
9981
9986
.9990
9993
9995
9997
9998
82853
36290
90056
52573
59335
47487
14893
18883
41979
08708
39950
45785
11776
70915
32592
61181
75532
86382
84826
11937
51025
95761
81868
91596
39244
41903
36071
87209
08727
97245
96565
97150
09547
68508
31260
92454
14592
06928
51719
02428
53372
04178
12724
00900
58636
93600
67181
53340
88692
03316](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F18a59f0a-7c8f-49a1-8487-9703585f340d%2F35434451-8e24-4334-9270-7715e5aeecf3%2Fz1h1que_processed.png&w=3840&q=75)
Transcribed Image Text:0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
TABLE A Standard Normal probabilities (continued)
.01
.02
.5040
.5080
5438
5478
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
TABLE B Random digits
Line
101
102
143
144
145
146
147
148
Table entry for z is the area under
the standard Normal curve to the
left of z.
149
150
TABLE D
.00
.5000
.5398
.5793
.6179
.6554
.6915
.7257
.7580
7881
.8159
.8413
.8643
.8849
.9032
.9192
.9332
.9452
.9554
.9641
9713
9772
.9821
.9861
9893
.9918
.9938
.9953
.9965
9974
9981
9987
9990
9993
.9995
9997
19223
73676
45467
52711
95592
68417
82739
60940
36009
38448
81486
59636
62568
45149
61041
14459
38167
73190
95857
35476
71487
13873
54580
71035
96746
96927
43909
15689
36759
69051
05007
68732
45740
27816
66925
08421
53645
66831
55588
12975
96767
72829
88565
62964
5832
.6217
.6591
19687
37609
54973
00694
71546
07511
.6950
.7291
.7611
.7910
.8186
.8438
.8665
.8869
.9049
.9207
9345
.9463
.9564
9649
.9719
.9778
9826
9864
9896
.9920
.9940
.9955
.9966
.9975
.9982
9987
.9991
.9993
.9995
9997
95034
47150
71709
38889
94007
35013
57890
72024
df
1
2 0.816 1.061
19365
48789
69487
88804
70206
32992
77684
26056
98532
32533
07118
55972
09984
81598
81507
09001
12149
19931
99477
14227
58984
64817
16632
55259
41807
78416
19
0.688 0.861
20 0.687 0.860
21 0.686 0.859
55658
44753
66812
68908
99404
13258
35964
50232
42628
88145
12633
59057
86278
05977
05233
88915
5871
.6255
.6628
.6985
.7324
.7642
7939
.8212
.8461
.8686
.8888
.9066
9222
9357
.9474
.9573
.9656
.9726
9783
.9830
9868
25
.20
.15
1.000 1.376 1.963
.9898
.9922
9941
.9956
.9967
.9976
9982
t distribution critical values
9987
.9991
.9994
.9995
.9997
.03
.5120
.5517
.5910
.6293
Table entry for p and C is the
critical value t* with probability p
lying to its right and probability C
lying between -t" and t".
.6664
.7019
.7357
.7673
.7967
8238
.8485
.8708
.8907
.9082
.9236
.9370
.9484
.9582
9664
9732
9788
9834
9871
.9901
.9925
.9943
.9957
.9968
.9977
.9983
.9988
.9991
9994
.9996
.9997
05756
99400
77558
93074
69971
15529
20807
17868
15412
18338
60513
04634
40325
75730
94322
31424
62183
04470
87664
39421
29077
95052
27102
43367
37823
36089
25330
06565
68288
87174
81194
84292
65561
18329
39100
77377
61421
40772
70708
13048
23822
97892
17797
83083
57857
66967
88737
19664
53946
41267
Probability
.04
5160
.5557
.5948
.6331
.6700
.7054
.7389
.7704
.7995
.8264
8508
.8729
.8925
.9099
.9251
.9382
.9495
.9591
.9671
9738
9793
9838
.9875
.9904
9927
.9945
.9959
.9969
9977
.9984
9988
.9992
.9994
.9996
.9997
28713
01927
00095
60227
91481
72765
47511
24943
39638
24697
09297
71197
03699
66280
24709
80371
70632
29669
92099
65850
14863
90908
56027
49497
71868
74192
64359
14374
22913
09517
14873
08796
33302
21337
78458
28744
47836
21558
41098
45144
96012
63408
49376
69453
95806
83401
74351
65441
68743
16853
.05
5199
5596
5987
.6368
.6736
.7088
.7422
.7734
.8023
.8289
.8531
.8749
.8944
.9115
.9265
.9394
.9505
.9599
.9678
9744
9798
.9842
9878
.9906
.9929
9946
.9960
.9970
9978
.9984
.9989
.9992
9994
.9996
9997
1.042 1.290 1.660 1.984
1.037 1.282 1.646 1.962 2.056
1.036
1.282 1.645
90%
1.960 2.054
95% 96%
70%
80%
Confidence level C
96409
27754
32863
40011
60779
85089
81676
61790
85453
39364
00412
19352
71080
03819
73698
65103
23417
84407
58806
04266
61683
73592
55892
72719
18442
77567
40085
13352
18638
84534
04197
43165
07051
35213
11206
75592
12609
47781
43563
72321
94591
77919
61762
46109
09931
60705
47500
20903
72460
84569
.06
.5239
.5636
.6026
.6406
.6772
.7123
.7454
.7764
.8051
.8315
.8554
.8770
.8962
.9131
.9279
.9406
.9515
9608
.9686
.9750
.9803
9846
9881
.9909
.9931
.9948
.9961
.9971
.9979
.9985
9989
.9992
.9994
.9996
9997
12531
42648
29485
85848
53791
57067
55300
90656
46816
42006
71238
73089
22553
56202
14526
62253
26185
90785
66979
35435
47052
75186
33063
96758
35119
88741
16925
49367
54303
06489
85576
93739
93623
37741
19876
08563
15373
33586
56934
81940
65194
44575
16953
59505
02150
02384
84552
62371
27601
79367
.07
5279
.5675
.6064
.6443
.6808
.7157
7486
.7794
.8078
.7823
.8106
.8365
.8599
.8810
.8997
.9162
9306
.9429
.9535
.9625
.9699
.9756 .9761
.9808
.9812
.9850
9854
.9884
9887
9911
9913
.9934
.9951
.9963
.9973
.9980
.8340
.8577
.8790
.8980
.9147
.9292
9418
.9525
.9616
9693
.9932
.9949
.9962
.9972
.9979
9985
.9989
.9992
.9995
9996
9997
.08
.5319
5714
.6103
.6480
.6844
.7190
7517
42544
82425
82226
48767
.9986
.9990
9993
.9995
9996
.9997
17297
50211
94383
87964
83485
76688
27649
84898
11486
02938
31893
50490
41448
65956
98624
43742
62224
87136
41842
27611
62103
48409
85117
81982
00795
87201
45195
31685
Upper-tail probability p
.01
.005 .0025 .001 .0005
.10 .05 .025 .02
3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
1.386 1.886 2.920 4.303 4.849 6.965 9925 14.09 22.33
3 0.765 0.978
4 0.741 0.941
1.250 1.638 2.353
1.190
1.156
5 0.727 0.920
1.533 2.132
1.476 2.015
1.440 1.943
1.415 1.895
6 0.718 0.906 1.134
7 0.711 0.896 1.119
3.182 3.482 4.541 5.841 7.453 10.21 12.92
2.776 2.999 3.747 4.604 5.598 7.173 8.610
2.571 2.757 3.365 4.032 4.773 5.893 6.869
2.447 2.612 3.143 3.707 4.317 5.208 5.959
2.365 2.517 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821
1.372 1.812 2.228 2.359 2.764
1.363 1.796 2.201 2.328 2.718
1.356 1.782 2.179 2.303 2.681
1 350 1.771 2.160 2.282 2.650
1.345 1.761 2.145 2.264 2.624
1.341 1.753 2.131 2.249 2.602
10 0.700 0.879 1.093
11 0.697 0.876 1.088
12 0.695 0.873 1.083
13 0.694 0.870 1.079
14 0.692 0.868 1.076
15 0.691 0.866 1.074
16 0.690 0.865 1.071
3.250 3.690 4.297 4.781
3.169 3.581 4.144 4.587
3.106 3.497 4.025 4.437
3.055 3.428 3.930 4.318
3012 3.372 3.852 4.221
2.977 3.326 3.787 4.140
2.947 3.286 3.733 4.073
1.337 1.746 2.120 2.235 2.583
2.921 3.252 3.686 4.015
17 0.689 0.863 1.069
18 0.688 0.862 1.067
18132
04312
87151
Probability p
79140
98481
79177
48394
00360
50842
24870
88604
69680
43163
90597
19909
22725
45403
32337
1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
1.330 1.734 2.101 2.214 2.552
1.323 1.721
1.321 1.717
23 0.685 0.858 1.060 1.319 1.714
24 0.685 0.857 1.059
25 0.684 0.856 1.058
26 0.684 0.856 1.058
27 0.684 0.855 1.057
0.683 0.855 1.056
2.878 3.197 3.611 3.922
1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
1.064
1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850
1.063
2.080 2.189 2.518 2.831 3.135 3.527 3.819
22 0.686 0.858 1.061
2.074 2.183 2.508 2.819 3.119 3.505 3.792
2,069 2.177 2.500 2.807 3.104 3.485 3.768
1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690
1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659
1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646
1.303 1.684 2.021 2.123 2.423 2.704
1299 1.676 2009 2.109 2.403 2678
28
29 0.683 0.854 1.055
30 0.683 0.854
40
0.681 0.851 1.050
50 0.679 0.849 1.047
60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390
80 0.678 0.846 1.043 1.292 1.664
100 0.677 0.845
1000 0.675 0.842
2* 0.674 0.841
50% 60%
2.971 3.307
2937 3261
2.660 2.915 3.232
1.990 2.088 2.374 2.639 2.887 3.195
2.081 2.364 2.626 2.871 3.174
3.551
3.496
3.460
3.416
3.390
3 300
2.330 2 581 2.813 3.098
2.326
2.576 2.807 3.091 3.291
98%
99%
99.5% 99.8% 99.9%
.09
.5359
.5753
.6141
.6517
.6879
.7224
.7549
7852
.8133
.8389
.8621
.8830
9015
.9177
.9319
.9441
9545
9633
.9706
9767
.9817
9857
.9890
.9916
.9936
.9952
9964
.9974
9981
9986
.9990
9993
9995
9997
9998
82853
36290
90056
52573
59335
47487
14893
18883
41979
08708
39950
45785
11776
70915
32592
61181
75532
86382
84826
11937
51025
95761
81868
91596
39244
41903
36071
87209
08727
97245
96565
97150
09547
68508
31260
92454
14592
06928
51719
02428
53372
04178
12724
00900
58636
93600
67181
53340
88692
03316
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman