3. Atomic vibrations in a metal. Consider point ions of mass M and charge e immersed in a uniform sea of conduction electrons. The ions are imagined to be in stable equilibrium when at regular lattice points. If one ion is displaced a small distance r from its equilibrium position, the restoring force is largely due to the electric charge within the sphere of radius r centered at the equilibrium position. Take the number density of ions (or of conduction electrons ) as 3/(47R³), which defines R. (a) Show that the frequency of a single ion set into oscillation is @= (e²/MR³)/². (b) Estimate the value of this frequency for sodium, roughly. (c) From (a), (b), and some common sense, estimate the order of magnitude of the velocity of sound in metal.
3. Atomic vibrations in a metal. Consider point ions of mass M and charge e immersed in a uniform sea of conduction electrons. The ions are imagined to be in stable equilibrium when at regular lattice points. If one ion is displaced a small distance r from its equilibrium position, the restoring force is largely due to the electric charge within the sphere of radius r centered at the equilibrium position. Take the number density of ions (or of conduction electrons ) as 3/(47R³), which defines R. (a) Show that the frequency of a single ion set into oscillation is @= (e²/MR³)/². (b) Estimate the value of this frequency for sodium, roughly. (c) From (a), (b), and some common sense, estimate the order of magnitude of the velocity of sound in metal.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images