3. A ball is thrown upwards at 13.0 m/s toward the ceiling located 6 m above the point where you release the ball. Air resistance is negligible. Objects falling near the earth's surface with no forces acting except gravity have a downwards acceleration of magnitude g. For this problem use g 10 m/s. Write any equation you use in symbolic form before substituting in numbers. a. Make a labeled picture with symbols and all relevant values. Put a coordinate system on the picture by indicating the location of the origin and position direction. b. Find the time taken to reach the ceiling. C. Find the velocity just before the ball touches the ceiling.
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
Step by step
Solved in 2 steps with 2 images