At the construction site of a tall building, a worker is in an elevator descending at a constant downwards velocity of 5 m/s. When the elevator is 40 meters above ground level, her friend, standing at ground level, tosses a wrench straight upward with an initial speed of 25 m/s. Take the time when the wrench is tossed ast = 0. For this problem, use g = 10 m/s?. a. Draw a labeled picture with symbols and all relevant values. Quantities that are different should be given different symbols, for example y, and Yw. b. Graph the velocities versus time of the elevator and the wrench on the same graph. Label axes of the graph (with units). C. At what time does the wrench and the elevator have the same velocity? 20 10 -10 -20 3 4 time (s) d. Which object (the wrench or elevator) is higher when their velocities are the same? By how much is one object higher than the other at this time? 2. (s/u) fa
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
![4. At the construction site of a tall building, a worker is in an elevator
descending at a constant downwards velocity of 5 m/s. When the elevator
is 40 meters above ground level, her friend, standing at ground level, tosses
a wrench straight upward with an initial speed of 25 m/s. Take the time
when the wrench is tossed as t = 0. For this problem, use g = 10 m/s².
a. Draw a labeled picture with symbols and all relevant values. Quantities
that are different should be given different symbols, for example y, and
Yw.
b. Graph the velocities versus time of the elevator and the wrench on the
same graph. Label axes of the graph (with units).
C.
At what time does the wrench and the elevator
have the same velocity?
20
10
-10
-20
3
4
time (s)
d.
Which object (the wrench or elevator) is higher when their velocities are the same? By how much is
one object higher than the other at this time?
(s/u) ka](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc88a4be5-ce0c-4e25-871d-a0bd16127b90%2F8fda91fa-a267-4115-ac85-00b9109a756c%2Frnzxftn_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)