21.The decomposition of N20(g) to nitrogen and oxygen has the rate law rate = k[N2O]² second order in N2O. where k = 1.1 x 10-3 /M s at 565 °C. If the initial concentration of a sample of N20 is 0.15 M, what is the concentration after 30 minutes (1800 seconds) at 565°C? а. 9.5 х 10 м b. 2.2 x 103 M c. 0.029 M d. 0.12 M е. 0.46 М
21.The decomposition of N20(g) to nitrogen and oxygen has the rate law rate = k[N2O]² second order in N2O. where k = 1.1 x 10-3 /M s at 565 °C. If the initial concentration of a sample of N20 is 0.15 M, what is the concentration after 30 minutes (1800 seconds) at 565°C? а. 9.5 х 10 м b. 2.2 x 103 M c. 0.029 M d. 0.12 M е. 0.46 М
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
21) please see attached
![**Decomposition of N₂O - Second Order Reaction**
**Question:**
The decomposition of N₂O(g) to nitrogen and oxygen has the rate law \( \text{rate} = k[\text{N}_2\text{O}]^2 \).
**Constants:**
- \( k = 1.1 \times 10^{-3} \text{ /M s at 565°C} \).
**Given:**
- Initial concentration of N₂O: \( 0.15 \text{ M} \).
- Time: \( 30 \text{ minutes (1800 seconds)} \).
**Question:**
What is the concentration after 30 minutes (1800 seconds) at 565°C?
**Options:**
a. \( 9.5 \times 10^{-3} \text{ M} \)
b. \( 2.2 \times 10^{-3} \text{ M} \)
c. \( 0.029 \text{ M} \)
d. \( 0.12 \text{ M} \)
e. \( 0.46 \text{ M} \)
---
To approach this question, you'll need to use the second-order rate law integrated form:
\[
\frac{1}{[\text{N}_2\text{O}]_t} = \frac{1}{[\text{N}_2\text{O}]_0} + kt
\]
Where:
- \([\text{N}_2\text{O}]_t\) is the concentration at time \( t \).
- \([\text{N}_2\text{O}]_0\) is the initial concentration.
- \( k \) is the rate constant.
- \( t \) is the time.
Plug in the known values to solve for \([\text{N}_2\text{O}]_t\):
\[
\frac{1}{[\text{N}_2\text{O}]_t} = \frac{1}{0.15 \text{ M}} + (1.1 \times 10^{-3} \text{ /M s}) (1800 \text{ s})
\]
Now calculate the right-hand side:
\[
\frac{1}{0.15} + (1.1 \times 10^{-3} \times 1800)
\]
\[
=](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F48deb947-3d41-43de-ac43-bef03e01cc59%2Fc0106aa4-9344-4392-a844-5220a5a6224a%2F03we4dj.png&w=3840&q=75)
Transcribed Image Text:**Decomposition of N₂O - Second Order Reaction**
**Question:**
The decomposition of N₂O(g) to nitrogen and oxygen has the rate law \( \text{rate} = k[\text{N}_2\text{O}]^2 \).
**Constants:**
- \( k = 1.1 \times 10^{-3} \text{ /M s at 565°C} \).
**Given:**
- Initial concentration of N₂O: \( 0.15 \text{ M} \).
- Time: \( 30 \text{ minutes (1800 seconds)} \).
**Question:**
What is the concentration after 30 minutes (1800 seconds) at 565°C?
**Options:**
a. \( 9.5 \times 10^{-3} \text{ M} \)
b. \( 2.2 \times 10^{-3} \text{ M} \)
c. \( 0.029 \text{ M} \)
d. \( 0.12 \text{ M} \)
e. \( 0.46 \text{ M} \)
---
To approach this question, you'll need to use the second-order rate law integrated form:
\[
\frac{1}{[\text{N}_2\text{O}]_t} = \frac{1}{[\text{N}_2\text{O}]_0} + kt
\]
Where:
- \([\text{N}_2\text{O}]_t\) is the concentration at time \( t \).
- \([\text{N}_2\text{O}]_0\) is the initial concentration.
- \( k \) is the rate constant.
- \( t \) is the time.
Plug in the known values to solve for \([\text{N}_2\text{O}]_t\):
\[
\frac{1}{[\text{N}_2\text{O}]_t} = \frac{1}{0.15 \text{ M}} + (1.1 \times 10^{-3} \text{ /M s}) (1800 \text{ s})
\]
Now calculate the right-hand side:
\[
\frac{1}{0.15} + (1.1 \times 10^{-3} \times 1800)
\]
\[
=
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY