16. Consider the wave function Ax) = (alm)" cxp(-ar2) Cakulate (x) for n = 1, 2. Can you quickly write down the result for (r")?
Q: 1. A particle of m moves in the attractive central potential: V(r) = ax6, where a is a constant and…
A: Ans 1: (a) A=(π2b)1/4. (b) E(b)=2mbℏ2+64b315α. (c) bmin=(32ℏ245αm)1/4. (d)…
Q: 5. A free particle has the following wave function at t = 0: V(x,0) = Ne-a|x| = [Ne-ª* x>0 Near x <…
A:
Q: 1. The ground state wave function for a particle trapped in the one-dimensional Coulomb potential…
A:
Q: 3. In the potential barrier problem, if the barrier is from x-aa, E a region? (k²: 2mE > 0) ħ² Ans:
A:
Q: Given a Gaussian wave function: Y(x) = e-mwx?/h %D Where a is a positive constant 1) Find the…
A:
Q: In this question we will cosider the quantum harmonic oscillator . The wavefunction of the first…
A:
Q: -x² wave function y(x) = € 3², (−∞0 ≤ x ≤ +∞). If the wave function is not normalized, please…
A:
Q: 9. Estimate the ground-state energy of a harmonic oscillator using the following trial wavefunction.…
A:
Q: x a, where Vo> 0.
A:
Q: 3a.3. Consider a longitudinal wave us propagating in a linear monoatomic chain of mass M and with…
A:
Q: 4. Show that the canonical ensemble probability 1 P.=ラ follows from maximizing S = -kEp, In p,…
A: The canonical partition function is given as:
Q: Consider the finite potential well IX xwa - E-lev E=0eV a. Can the measured value of a particle's…
A: (a) No the measured value of a particle's energy in the well can not be zero as the minimum energy…
Q: 2. A quantum simple harmonic oscillator (SHO) of mass m and angular frequency w has been prepared in…
A:
Q: 2. Consider two vectors, and v₂ which lie in the x-y plane of the Bloch sphere. Find the relative…
A:
Q: 2. Find the best bound on Es for the one-dimensional harmonic oscillator using the trial wave…
A:
Q: What is zero point energy? Explain this phrase in terms of the quantum mechanical harmonic…
A:
Q: 3) Assume propagating Vo 0 a one-dimension step potential with electrons described by free electron…
A: E = 4 eV V0 = 2 eV = E/2
Q: 7. Write out the partition function for a three-dimensional har- monic oscillator assuming that it…
A:
Q: 1. For the n 4 state of the finite square well potential, sketch: (a) the wave function (b) the…
A:
Q: A particle is described by the following normalized superposition wavefunction: Y(x)= =√(si…
A:
Q: For a one-dimensional box, we assume that the particle is confined between rigid, unyielding walls…
A:
Q: 1. A particle of m moves in the attractive central potential: V(r) = ax6, where a is a constant and…
A: The objective of the question is to compute the normalization constant A, calculate the ground state…
Q: 4. Find the points of maximum and minimum probability density for the nth state of a particle in a…
A: For a 1-D box The wave function is, ψnx=2L sinnπxLProbability density, ρ=ψ*nψn =2L sinnπxL2L…
Q: 2. A wave function is a linear combination of 1s, 2s, and 3s orbitals: y(r) = N(0.25 w,; + 0.50w2;…
A: Given: A wave function is a linear combination of 1s, 2s, and 3sψ(r) = N0.25ψ1s + 0.50ψ2s + 0.30 ψ3s…
Step by step
Solved in 3 steps with 2 images
- A particle has a wave function y(r)= Ne¯u , where N and a are real and positive constants. a) Determine the normalization value N. b) Find the average value of y c) Obtain the dispersion (Ar)? Note, you can use dz =r'(n+1) = n!7. Consider a particle in an infinite square well centered at x = 0 in one of its stationary states. For this problem, you may look up any integrals. Some useful ones are given in Harris. a) Compute (x) and (pr) for arbitrary n. Do this by direct computation but then describe how you could have found these results using symmetry (the symmetry can either be symmetry in the physical system, such as the shape of the wave function, or symmetry related to the expectation value integral, such as the shape of the integrand). b) Using your answer to part a), show that the uncertainty in the momentum is Apx nh for arbitrary n. Do this two ways: (i) first by using your answer to part a) and directly computating (p2) (via an integral) and (ii) by using your answer to part a) and relating (p2) to the kinetic energy operator. c) Show that the uncertainty principle holds for the ground state. 2L -I need the answer as soon as possible
- 125. An attractive square well potential is 55 represented by -V for r a The scattering due to this potential in low energy limit is proportional to nth power of a. Here n is (1) 2 (2) 4 (3) 5 (4) 64. Normalize the following wavefunctions 4 55 (a) v(x) = sin (#2); =sin(); for a particle in a 1D box of length L. (b) (2) = xe-z|2 (c) (x) = e(x²/a²)+(ikz) 5. In a region of space, a particle with mass m and with zero energy has a time- independent wave-function (x) = Ae-2/12, where A and L are constants. Use your knowledge of the Schrödinger equation to determine the potential energy V(x) of the particle. Plot the potential function? What is the minimum potential energy for the particle, if it is an electron and L = 1 fm? Is this potential repulsive or attractive?