4. Normalize the following wavefunctions 4 55 (a) v(x) = sin (#2); =sin(); for a particle in a 1D box of length L. (b) (2) = xe-z|2 (c) (x) = e(x²/a²)+(ikz) 5. In a region of space, a particle with mass m and with zero energy has a time- independent wave-function (x) = Ae-2/12, where A and L are constants. Use your knowledge of the Schrödinger equation to determine the potential energy V(x) of the particle. Plot the potential function? What is the minimum potential energy for the particle, if it is an electron and L = 1 fm? Is this potential repulsive or attractive?
4. Normalize the following wavefunctions 4 55 (a) v(x) = sin (#2); =sin(); for a particle in a 1D box of length L. (b) (2) = xe-z|2 (c) (x) = e(x²/a²)+(ikz) 5. In a region of space, a particle with mass m and with zero energy has a time- independent wave-function (x) = Ae-2/12, where A and L are constants. Use your knowledge of the Schrödinger equation to determine the potential energy V(x) of the particle. Plot the potential function? What is the minimum potential energy for the particle, if it is an electron and L = 1 fm? Is this potential repulsive or attractive?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
![4. Normalize the following wavefunctions
4 55
(a) v(x) = sin (#2);
=sin(); for a particle in a 1D box of length L.
(b) (2) = xe-z|2
(c) (x) = e(x²/a²)+(ikz)
5. In a region of space, a particle with mass m and with zero energy has a time-
independent wave-function (x) = Ae-2/12, where A and L are constants. Use
your knowledge of the Schrödinger equation to determine the potential energy V(x)
of the particle. Plot the potential function? What is the minimum potential energy
for the particle, if it is an electron and L = 1 fm? Is this potential repulsive or
attractive?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff749da23-a09b-4c61-a476-f7b180006035%2Ffc014018-b6cb-4e2b-a900-22b1d8d1201e%2Fldoqsib_processed.jpeg&w=3840&q=75)
Transcribed Image Text:4. Normalize the following wavefunctions
4 55
(a) v(x) = sin (#2);
=sin(); for a particle in a 1D box of length L.
(b) (2) = xe-z|2
(c) (x) = e(x²/a²)+(ikz)
5. In a region of space, a particle with mass m and with zero energy has a time-
independent wave-function (x) = Ae-2/12, where A and L are constants. Use
your knowledge of the Schrödinger equation to determine the potential energy V(x)
of the particle. Plot the potential function? What is the minimum potential energy
for the particle, if it is an electron and L = 1 fm? Is this potential repulsive or
attractive?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON