14 Suppose you see two main-sequence stars of the same spectral type. Star 1 is dimmer in apparent brightness than Star 2 by a factor of 100. What can you conclude? (Neglect any effects that might be caused by interstellar dust and gas.) A B C D Star 1 is 10 times more distant than Star 2. The luminosity of Star 1 is a factor of 100 less than the luminosity of Star 2. Star 1 is 100 times nearer than Star 2. Star 1 is 100 times more distant than Star 2. E Without first knowing the distances to these stars, you cannot draw any conclusions about how their true luminosities compare to each other.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
14 Suppose you see two main-sequence stars of the same spectral type. Star 1 is dimmer in apparent brightness than Star 2 by a factor of 100. What can you conclude?
(Neglect any effects that might be caused by interstellar dust and gas.)
A
B
C
D
Star 1 is 10 times more distant than Star 2.
The luminosity of Star 1 is a factor of 100 less than the luminosity of Star 2.
Star 1 is 100 times nearer than Star 2.
Star 1 is 100 times more distant than Star 2.
E Without first knowing the distances to these stars, you cannot draw any conclusions about how their true luminosities compare to each other.
Transcribed Image Text:14 Suppose you see two main-sequence stars of the same spectral type. Star 1 is dimmer in apparent brightness than Star 2 by a factor of 100. What can you conclude? (Neglect any effects that might be caused by interstellar dust and gas.) A B C D Star 1 is 10 times more distant than Star 2. The luminosity of Star 1 is a factor of 100 less than the luminosity of Star 2. Star 1 is 100 times nearer than Star 2. Star 1 is 100 times more distant than Star 2. E Without first knowing the distances to these stars, you cannot draw any conclusions about how their true luminosities compare to each other.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Stellar evolution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON