11.7 The following heat sink consists of a 1 m tall central tube and 12 radial fins that are uniformly distributed every 30°C around the central tube. The central tube has an outer diameter of 0.4 m and an inner diameter of 0.36 m. Each fin is 0.048 m wide, 0.4 m long, and 1 m tall. The vapor temperature inside the tube is 315°C with a heat transfer coefficient of 2.94 x 105 W/(m2°C). The surrounding air temperature is 0°C with a heat transfer coefficient of 40.88 W/(m2°C). The heat sink is made of aluminum alloy with a thermal conductivity of 175 W/ (m K), a density of 2770 kg/m³, and a specific heat of 870 J/(kg K). Optimize the fin width W and the fin length L to minimize the use of material while achieving a minimum heat dissipation of 75 kW per unit length. The design variables W and L have the following range of variations: 0.03 m < W<0.052 m, and 0.2 m

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
11.7 The following heat sink consists of a 1 m tall central tube and 12 radial fins
that are uniformly distributed every 30°C around the central tube. The central
tube has an outer diameter of 0.4 m and an inner diameter of 0.36 m. Each fin is
0.048 m wide, 0.4 m long, and 1 m tall. The vapor temperature inside the tube
is 315°C with a heat transfer coefficient of 2.94 x 105 W/(m²°C). The surrounding
air temperature is 0°C with a heat transfer coefficient of 40.88 W/(m2°C). The
heat sink is made of aluminum alloy with a thermal conductivity of 175 W/
(m K), a density of 2770 kg/m³, and a specific heat of 870 J/(kg K). Optimize
the fin width W and the fin length L to minimize the use of material while
achieving a minimum heat dissipation of 75 kW per unit length. The design
variables W and L have the following range of variations: 0.03 m < W<0.052 m,
and 0.2 m <L<0.45 m.
W
Transcribed Image Text:11.7 The following heat sink consists of a 1 m tall central tube and 12 radial fins that are uniformly distributed every 30°C around the central tube. The central tube has an outer diameter of 0.4 m and an inner diameter of 0.36 m. Each fin is 0.048 m wide, 0.4 m long, and 1 m tall. The vapor temperature inside the tube is 315°C with a heat transfer coefficient of 2.94 x 105 W/(m²°C). The surrounding air temperature is 0°C with a heat transfer coefficient of 40.88 W/(m2°C). The heat sink is made of aluminum alloy with a thermal conductivity of 175 W/ (m K), a density of 2770 kg/m³, and a specific heat of 870 J/(kg K). Optimize the fin width W and the fin length L to minimize the use of material while achieving a minimum heat dissipation of 75 kW per unit length. The design variables W and L have the following range of variations: 0.03 m < W<0.052 m, and 0.2 m <L<0.45 m. W
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY