1.The best fitted model 2.Point prediction based on the best model 3.Hypothesis Testing

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

1.The best fitted model
2.Point prediction based on the best model
3.Hypothesis Testing

1
(Constart)
Unstandardized Coeficients
Std. Error
479.145 40.527
388
048
Model
1
reported_violent_come_rat
e_per_100000_residents
a. Dependent Variable: total overal reported crime_rate_per_1_milion_residents
annual_police_funding_in_
dollar_and_resident
percentage of people 25
_years_plus_with_4_years
_of_high school
Standardized
Coeficients
Beta
Coefficients"
Beta In
200
004b
Predicted Value
Residual
757
1
2
a. Dependent Variable:
total_overall
t
11.823
<.001
8.014 <.001
t
1.867
Excluded Variables"
043
Model Dimension Eigenvalue
1
1.735
265
Sig
Sig.
95.0% Confidence interval for B
Correlations
Colinearity Statistics
Lower Bound Upper Bound Zero-order Partial Part Tolerance VIF
397 660
560.630
290
485
.068
Std. Predicted Value
-1.023
Std. Residual
-1.839
a. Dependent Variable: total_overall
966
a. Dependent Variable: total_overall reported_crime_rate_per_1_million_residents
b. Predictors in the Model: (Constant),
reported_violent_crime_rate_per_100000_residents
Collinearity Diagnostics"
Partial
Correlation
Condition.
Index
1.000
2.560
5.105
3.580
263
.006
Residuals Statistics"
Minimum Maximum Mean
490.3845 1853.0935 717.9600
-357.12399 695.29614
reported_crime_rate_per_1_million_residents
(Constant)
.13
.87
757
Tolerance
741
Collinearity Statistics
966
757 757 1.000 1.000
Variance Proportions
VIF
1.350
1.035
1.000
.990
reported viole
nt_crime_rate_
per_100000_r
esidents
Std. Deviation
222.36618
00000 192.23236
.000
.000
reported_crime_rate_per_1_million_residents
13
.87
N
50
50
50
50
Minimum
Tolerance
741
.966
Transcribed Image Text:1 (Constart) Unstandardized Coeficients Std. Error 479.145 40.527 388 048 Model 1 reported_violent_come_rat e_per_100000_residents a. Dependent Variable: total overal reported crime_rate_per_1_milion_residents annual_police_funding_in_ dollar_and_resident percentage of people 25 _years_plus_with_4_years _of_high school Standardized Coeficients Beta Coefficients" Beta In 200 004b Predicted Value Residual 757 1 2 a. Dependent Variable: total_overall t 11.823 <.001 8.014 <.001 t 1.867 Excluded Variables" 043 Model Dimension Eigenvalue 1 1.735 265 Sig Sig. 95.0% Confidence interval for B Correlations Colinearity Statistics Lower Bound Upper Bound Zero-order Partial Part Tolerance VIF 397 660 560.630 290 485 .068 Std. Predicted Value -1.023 Std. Residual -1.839 a. Dependent Variable: total_overall 966 a. Dependent Variable: total_overall reported_crime_rate_per_1_million_residents b. Predictors in the Model: (Constant), reported_violent_crime_rate_per_100000_residents Collinearity Diagnostics" Partial Correlation Condition. Index 1.000 2.560 5.105 3.580 263 .006 Residuals Statistics" Minimum Maximum Mean 490.3845 1853.0935 717.9600 -357.12399 695.29614 reported_crime_rate_per_1_million_residents (Constant) .13 .87 757 Tolerance 741 Collinearity Statistics 966 757 757 1.000 1.000 Variance Proportions VIF 1.350 1.035 1.000 .990 reported viole nt_crime_rate_ per_100000_r esidents Std. Deviation 222.36618 00000 192.23236 .000 .000 reported_crime_rate_per_1_million_residents 13 .87 N 50 50 50 50 Minimum Tolerance 741 .966
Sig (1-talled)
N
Mean
total_ overall reported crim 717.9600
e_rate_per_1_million resi
Pearson Correlation total overal reported crim
_rate_per_1_million resi
Model
Descriptive Statistics
dents
reported violent_crime rat 616.1800
e_per_100000_residents
annual police funding in
dollar and resident
percentage of people 25
_years_plus_with_4_years
of high school
Model
1
dents
reported violent crime rat
per 100000 residents
annual police funding in
dollar and resident
percentage of people 25
years plus with 4 years
of high school
total_overal reported crim
e_rate_per_1_minion resi
dents
reported violent_come_rat
per_100000 residents
annual police funding in
dollar and resident
percentage of people 25
years_plus_with_4_years
_of_high school
total overal reported crim
e_rate per 1 million resi
dents
reported violent crime rat
per 100000 residents
annual police funding in
dollar and resident
percentage of people 25
years plus with 4 years
of high school
Model
1
R
757
reported viole
nt crime rate
per 100000_
esidents
37.7600
50.8000
R Square
572
Std. Deviation
293.93877
Correlations.
total overall re reported viole
ported criment crime rate
ate per 1 mill per 100000
len residents
esidents
1.000
757
-135
533
,000
000
174
50
50
ANOVA
df
50
573.73917
50
Variables Entered/Removed"
Variables
Entered
Variables
Removed
Model Summary
13.82036
563
9.96525
757
1.000
509
-184
<.001
000
100
50
50
50
a. Dependent Variable.
total_ overall reported_crime_rate_per_1_million_res
idents
50
Method
a. Predictors: (Constant),
b. Dependent Variable:
total_overall reported crime_rate_per_1_million residents
Stepwise
(Criteria)
Adjusted R Std. Error of the
Square
Estimate
Probability-of-
F-to-enter
050,
Probability-of-
F-to-remove
100).
N
194.22445
50
50
50
50
annual police
funding_in_d
altar_and_resi
dent
533
509
1.000
F
Mean Square
1 2422889.276 64 228
48 37723.138
49
120
<.001
000
reported_violent_crime_rate_per_100000_residents
203
50
50
50
Durbin-Watson
50
Sum of
Squares
Regression 2422889.276
Residual
1810710.644
4233599.920
Total
a. Dependent Variable: total_overall reported_crime_rate_per_1_million_residents
b. Predictors: (Constant), reported_violent_crime_rate_per_100000_residents
1.890
percentage of
people 25 y
ears_plus_wit
h_4_years_of_
high school
-135
Sig
<.001
-184
120
1.000
174
100
203
50
50
50
50
Transcribed Image Text:Sig (1-talled) N Mean total_ overall reported crim 717.9600 e_rate_per_1_million resi Pearson Correlation total overal reported crim _rate_per_1_million resi Model Descriptive Statistics dents reported violent_crime rat 616.1800 e_per_100000_residents annual police funding in dollar and resident percentage of people 25 _years_plus_with_4_years of high school Model 1 dents reported violent crime rat per 100000 residents annual police funding in dollar and resident percentage of people 25 years plus with 4 years of high school total_overal reported crim e_rate_per_1_minion resi dents reported violent_come_rat per_100000 residents annual police funding in dollar and resident percentage of people 25 years_plus_with_4_years _of_high school total overal reported crim e_rate per 1 million resi dents reported violent crime rat per 100000 residents annual police funding in dollar and resident percentage of people 25 years plus with 4 years of high school Model 1 R 757 reported viole nt crime rate per 100000_ esidents 37.7600 50.8000 R Square 572 Std. Deviation 293.93877 Correlations. total overall re reported viole ported criment crime rate ate per 1 mill per 100000 len residents esidents 1.000 757 -135 533 ,000 000 174 50 50 ANOVA df 50 573.73917 50 Variables Entered/Removed" Variables Entered Variables Removed Model Summary 13.82036 563 9.96525 757 1.000 509 -184 <.001 000 100 50 50 50 a. Dependent Variable. total_ overall reported_crime_rate_per_1_million_res idents 50 Method a. Predictors: (Constant), b. Dependent Variable: total_overall reported crime_rate_per_1_million residents Stepwise (Criteria) Adjusted R Std. Error of the Square Estimate Probability-of- F-to-enter 050, Probability-of- F-to-remove 100). N 194.22445 50 50 50 50 annual police funding_in_d altar_and_resi dent 533 509 1.000 F Mean Square 1 2422889.276 64 228 48 37723.138 49 120 <.001 000 reported_violent_crime_rate_per_100000_residents 203 50 50 50 Durbin-Watson 50 Sum of Squares Regression 2422889.276 Residual 1810710.644 4233599.920 Total a. Dependent Variable: total_overall reported_crime_rate_per_1_million_residents b. Predictors: (Constant), reported_violent_crime_rate_per_100000_residents 1.890 percentage of people 25 y ears_plus_wit h_4_years_of_ high school -135 Sig <.001 -184 120 1.000 174 100 203 50 50 50 50
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman