1.10-10 A cable and pulley system at D is used to bring a 230-kg pole (ACB) to a vertical position, as shown in the figure part a. The cable has tensile force T and is attached at C. The length L of the pole is 6.0 m, the outer diameter is d = 140 mm, and the wall thickness is t = 12 mm. The pole pivots about a pin at A in figure part b. The allowable shear stress in the pin is 60 MPa and the allowable bearing stress is 90 MPa. Find the minimum diameter of the pin at A in order to support the weight of the pole in the position shown in the figure part a. 1.0 m B 5.0 m Pole Pin support plates 30° A Cable a (a) 4.0 m 1 (b) Pulley ACB Pin D T
1.10-10 A cable and pulley system at D is used to bring a 230-kg pole (ACB) to a vertical position, as shown in the figure part a. The cable has tensile force T and is attached at C. The length L of the pole is 6.0 m, the outer diameter is d = 140 mm, and the wall thickness is t = 12 mm. The pole pivots about a pin at A in figure part b. The allowable shear stress in the pin is 60 MPa and the allowable bearing stress is 90 MPa. Find the minimum diameter of the pin at A in order to support the weight of the pole in the position shown in the figure part a. 1.0 m B 5.0 m Pole Pin support plates 30° A Cable a (a) 4.0 m 1 (b) Pulley ACB Pin D T
Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter1: Tension, Compression, And Shear
Section: Chapter Questions
Problem 1.9.10P: A cable and pulley system in the figure part a supports a cage of a mass 300 kg at B. Assume that...
Related questions
Question
Expert Solution
Step 1Given
The mass of the ACB pole is .
The length of the pole is .
The outer diameter is
The thickness of the wall is .
The allowable shear stress of the pin is .
The allowable bearing stress of the pin is .
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning