1. Using Laws of the Predicate Calculus 0-26, prove the following: [X⇒ XVY "⇒V" (27) 2. Using Laws of the Predicate Calculus 0-27, prove the following: (28) [XAY=X] "A⇒" 3. Using Laws of the Predicate Calculus 0-28, prove the following: [XAY=XVY

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Hello, I'm trying to complete the following Discrete Maths questions. 

  • I've attached a screenshot of the questions.
  • I've also attached a picture of the Laws Of The Predicate Calculus sheet we use.
  • The number beside the question e.g. (13) represents the Law on the Predicate Calculus Sheet. 

PLEASE NOTE: The question title informs you up to which law on the sheet you can use. e.g. Using Laws of the Predicate Calculus 0–26, prove the following: You CANNOT use laws 27+ in this scenario. 

 

 

1. Using Laws of the Predicate Calculus 0-26, prove the following:
(27) [X ⇒ XV Y]
"⇒V"
2. Using Laws of the Predicate
[XAY = X]
(28)
Calculus 0-27, prove the following:
"^⇒"
3. Using Laws of the Predicate Calculus 0-28, prove the following:
[XAY=XVY]
Transcribed Image Text:1. Using Laws of the Predicate Calculus 0-26, prove the following: (27) [X ⇒ XV Y] "⇒V" 2. Using Laws of the Predicate [XAY = X] (28) Calculus 0-27, prove the following: "^⇒" 3. Using Laws of the Predicate Calculus 0-28, prove the following: [XAY=XVY]
0
1
2
3
4
5
6
7
8
8a
9
10
24
25
26
27
28
29
30
31
32
33
= associative*
= symmetric*
= identity*
= reflexive
true
11
12
13
14
15
16
17
18
V/A
19 A/V
20
21
22
23
34
35
36
v symmetric*
v associative*
v idempotent*
V/=*
V/EB
v/v
v zero
Golden Rule*
Asymmetric
^ associative
^ idempotent
^ identity
absorption.0
absorption.1
A over=
A/EE
strong MP
replacement
→ definition*
→ reflexive
=> true
⇒V
1➡>>
shunting
to A=
⇒over=
←
=definition*
44>>
7
LAWS OF THE PREDICATE CALCULUS
false definition*
over =*
- neg-identity
[(X=(Y=Z)) = ((X=Y) = Z)]
[X=Y=Y=X]
[X = true = X]
[X=X]
[true]
[Xv Y = YvX]
[Xv (YvZ) = (XVY) v Z]
[Xv X = X]
[Xv (Y=Z) = Xv Y = Xv Z]
[Xv (Y=Z=W) = Xv Y = XvZ = Xv W]
[Xv (YvZ) = (XVY) v (X v Z)]
[Xv true = true]
[X. Y = X = Y = Xv Y]
[XAY = YAX]
[XA (YAZ) = (X^ Y) ^ Z]
E
[X^X = X]
[X A true = X]
[XA (XVY) = X]
[XV (XAY) = X]
[XV (YAZ) = (XVY) A (XV Z)]
[XA (YV Z) = (X^Y) V (X^Z)]
[X. (Y=Z) = XAY = XAZ = X]
[XA (Y=Z=W) = XAY = X^ Z = X^ W]
[X^ (X= Y) = XAY]
[(X=Y) ^ (W = X) = (X=Y) ^ (W = Y)]
[X Y = Xv Y = Y]
[X⇒X]
[X→> true]
[X → Xv Y]
[X^ Y ⇒ X]
[XAY = Z = X=(Y=Z]
[X = Y = X^ Y=X]
[X➡ (Y=Z) = XAY=X^Z]
[X
[X
Y = XA Y = Y]
Y = Y⇒X]
[false = true]
[-(X=Y) = -X=Y]
[-X=X=false]
postulates are decorated with a *
Transcribed Image Text:0 1 2 3 4 5 6 7 8 8a 9 10 24 25 26 27 28 29 30 31 32 33 = associative* = symmetric* = identity* = reflexive true 11 12 13 14 15 16 17 18 V/A 19 A/V 20 21 22 23 34 35 36 v symmetric* v associative* v idempotent* V/=* V/EB v/v v zero Golden Rule* Asymmetric ^ associative ^ idempotent ^ identity absorption.0 absorption.1 A over= A/EE strong MP replacement → definition* → reflexive => true ⇒V 1➡>> shunting to A= ⇒over= ← =definition* 44>> 7 LAWS OF THE PREDICATE CALCULUS false definition* over =* - neg-identity [(X=(Y=Z)) = ((X=Y) = Z)] [X=Y=Y=X] [X = true = X] [X=X] [true] [Xv Y = YvX] [Xv (YvZ) = (XVY) v Z] [Xv X = X] [Xv (Y=Z) = Xv Y = Xv Z] [Xv (Y=Z=W) = Xv Y = XvZ = Xv W] [Xv (YvZ) = (XVY) v (X v Z)] [Xv true = true] [X. Y = X = Y = Xv Y] [XAY = YAX] [XA (YAZ) = (X^ Y) ^ Z] E [X^X = X] [X A true = X] [XA (XVY) = X] [XV (XAY) = X] [XV (YAZ) = (XVY) A (XV Z)] [XA (YV Z) = (X^Y) V (X^Z)] [X. (Y=Z) = XAY = XAZ = X] [XA (Y=Z=W) = XAY = X^ Z = X^ W] [X^ (X= Y) = XAY] [(X=Y) ^ (W = X) = (X=Y) ^ (W = Y)] [X Y = Xv Y = Y] [X⇒X] [X→> true] [X → Xv Y] [X^ Y ⇒ X] [XAY = Z = X=(Y=Z] [X = Y = X^ Y=X] [X➡ (Y=Z) = XAY=X^Z] [X [X Y = XA Y = Y] Y = Y⇒X] [false = true] [-(X=Y) = -X=Y] [-X=X=false] postulates are decorated with a *
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,