1. In this problem assume the positive direction is up and the negative direction is down and that the floor is zero position. a. A ball starts 1.5 m above the floor. The ball is dropped, it hits the floor and bounces. Make a sketch of the position vs. time graph you would expect as the ball falls, hits the floor, bounces back up, then falls to hit the floor again. Which kinematic equation describes the position of the ball, as time passes, while it is in the air? b. Make a sketch of the velocity vs. time graph for the ball as it falls, hits the floor, bounces back up, and falls to hit the floor. Which kinematic equation describes the velocity for the ball, in terms of time, while it is in the air? c. Make a sketch of the acceleration vs. time graph for the ball as it falls, hits the floor, bounces back up, and falls to hit the floor. What will be the acceleration of the ball as it falls? What will be its acceleration as it rises?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
Kinematic equation:
The motion of an object with constant acceleration is described by a set of equations known as kinematic equations.
Integrals, derivatives, and rates of change must all be understood in order to solve kinematics problems.
Step by step
Solved in 4 steps with 3 images