1. FIGURE 52 shows the one-line diagram of a simple three-bus power system with generation at bus I. The voltage at bus l is V1 = 1.0L0° per unit. The scheduled loads on buses 2 and 3 are marked on the diagram. Line impedances are marked in per unit on a 100 MVA base. For the purpose of hand calculations, line resistances and line charging susceptances are neglected a) Using Gauss-Seidel method and initial estimates of Va 0)-1.0+)0 and V o)- ( 1.0 +j0, determine V2 and V3. Perform two iterations (b) If after several iterations the bus voltages converge to V20.90-j0.10 pu 0.95-70.05 pu determine the line flows and line losses and the slack bus real and reactive power. 2 400 MW 320 Mvar Slack 0.0125 0.05 300 MW 270 Mvar FIGURE 52

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
100%

The figure attached to this question shows the 1 line diagram of a simple three bus power system with generation at bus 1. Please explain each step in your solution process. Will upvote! 

1.
FIGURE 52 shows the one-line diagram of a simple three-bus power system with
generation at bus I. The voltage at bus l is V1 = 1.0L0° per unit. The scheduled
loads on buses 2 and 3 are marked on the diagram. Line impedances are marked in
per unit on a 100 MVA base. For the purpose of hand calculations, line resistances
and line charging susceptances are neglected
a) Using Gauss-Seidel method and initial estimates of Va
0)-1.0+)0 and V o)-
(
1.0 +j0, determine V2 and V3. Perform two iterations
(b) If after several iterations the bus voltages converge to
V20.90-j0.10 pu
0.95-70.05 pu
determine the line flows and line losses and the slack bus real and reactive power.
2
400 MW
320 Mvar
Slack
0.0125
0.05
300 MW
270 Mvar
FIGURE 52
Transcribed Image Text:1. FIGURE 52 shows the one-line diagram of a simple three-bus power system with generation at bus I. The voltage at bus l is V1 = 1.0L0° per unit. The scheduled loads on buses 2 and 3 are marked on the diagram. Line impedances are marked in per unit on a 100 MVA base. For the purpose of hand calculations, line resistances and line charging susceptances are neglected a) Using Gauss-Seidel method and initial estimates of Va 0)-1.0+)0 and V o)- ( 1.0 +j0, determine V2 and V3. Perform two iterations (b) If after several iterations the bus voltages converge to V20.90-j0.10 pu 0.95-70.05 pu determine the line flows and line losses and the slack bus real and reactive power. 2 400 MW 320 Mvar Slack 0.0125 0.05 300 MW 270 Mvar FIGURE 52
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 9 steps with 8 images

Blurred answer
Knowledge Booster
Compensation Techniques in Transmission Line
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,