1. Factorial (20 points) In math, if you have a number n, the factorial function (written n!) computes nx (n-1) x (n-2) x (n-3) x ... x 1. For example: • O! is defined to be 1 • 1! =1 • 2! = 2x1= 2 • 3! = 3 x 2 x1 = 6 • 4! = 4x 3 x 2 x1= 24 5! = 5 x 4 x 3 x 2 x 1= 120 Add your code to the provided function signature so it computes the factorial of the integer it is given. You may not use math.factorial() in your function.
1. Factorial (20 points) In math, if you have a number n, the factorial function (written n!) computes nx (n-1) x (n-2) x (n-3) x ... x 1. For example: • O! is defined to be 1 • 1! =1 • 2! = 2x1= 2 • 3! = 3 x 2 x1 = 6 • 4! = 4x 3 x 2 x1= 24 5! = 5 x 4 x 3 x 2 x 1= 120 Add your code to the provided function signature so it computes the factorial of the integer it is given. You may not use math.factorial() in your function.
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Concept explainers
Max Function
Statistical function is of many categories. One of them is a MAX function. The MAX function returns the largest value from the list of arguments passed to it. MAX function always ignores the empty cells when performing the calculation.
Power Function
A power function is a type of single-term function. Its definition states that it is a variable containing a base value raised to a constant value acting as an exponent. This variable may also have a coefficient. For instance, the area of a circle can be given as:
Question
Python
Test Program:
import recursive_functions
import math
def main():
# Test factorial
print('Testing factorial.')
assert recursive_functions.factorial(0) == 1
assert recursive_functions.factorial(1) == math.factorial(1)
== 1
assert recursive_functions.factorial(2) == math.factorial(2)
== 2
assert recursive_functions.factorial(5) == math.factorial(5)
== 120
assert recursive_functions.factorial(7) == math.factorial(7)
== 5040
print('All tests pass for `factorial` ()\n')
# Test sum_recursively
print('Testing sum_recursively.')
assert recursive_functions.sum_recursively(0) == 0
assert recursive_functions.sum_recursively(1) ==
sum(range(1+1)) == 1
assert recursive_functions.sum_recursively(2) ==
sum(range(2+1)) == 3
assert recursive_functions.sum_recursively(10) ==
sum(range(10+1)) == 55
print('All tests pass for `sum_recursively` () ')
# Test sumlist_recursively(l)
print('Testing sumlist_recursively.')
assert recursive_functions.sumlist_recursively([1,2,3]) ==
sum([1,2,3])
assert
recursive_functions.sumlist_recursively([42,16,99,102,1]) ==
sum([42,16,99,102,1])
assert recursive_functions.sumlist_recursively([17,13,9,5,1])
== sum([17,13,9,5,1])
print('All tests pass for r_sumlist ()\n')
# Test multiply_recursively
print('Testing multiply_recursively.')
assert recursive_functions.multiply_recursively(5, 1) == 5*1
== 5
assert recursive_functions.multiply_recursively(7, 4) == 7*4
== 28
import math
def main():
# Test factorial
print('Testing factorial.')
assert recursive_functions.factorial(0) == 1
assert recursive_functions.factorial(1) == math.factorial(1)
== 1
assert recursive_functions.factorial(2) == math.factorial(2)
== 2
assert recursive_functions.factorial(5) == math.factorial(5)
== 120
assert recursive_functions.factorial(7) == math.factorial(7)
== 5040
print('All tests pass for `factorial` ()\n')
# Test sum_recursively
print('Testing sum_recursively.')
assert recursive_functions.sum_recursively(0) == 0
assert recursive_functions.sum_recursively(1) ==
sum(range(1+1)) == 1
assert recursive_functions.sum_recursively(2) ==
sum(range(2+1)) == 3
assert recursive_functions.sum_recursively(10) ==
sum(range(10+1)) == 55
print('All tests pass for `sum_recursively` () ')
# Test sumlist_recursively(l)
print('Testing sumlist_recursively.')
assert recursive_functions.sumlist_recursively([1,2,3]) ==
sum([1,2,3])
assert
recursive_functions.sumlist_recursively([42,16,99,102,1]) ==
sum([42,16,99,102,1])
assert recursive_functions.sumlist_recursively([17,13,9,5,1])
== sum([17,13,9,5,1])
print('All tests pass for r_sumlist ()\n')
# Test multiply_recursively
print('Testing multiply_recursively.')
assert recursive_functions.multiply_recursively(5, 1) == 5*1
== 5
assert recursive_functions.multiply_recursively(7, 4) == 7*4
== 28
print('All tests pass for `multiply_recursively` ()\n')
# Test reverse_recursively
print('Testing reverse_recursively.')
assert recursive_functions.reverse_recursively([1, 2, 3, 4])
== [4, 3, 2, 1]
life = ['born', 'grow up', 'grow old']
assert recursive_functions.reverse_recursively(life) == ['grow
old', 'grow up', 'born']
print('All tests pass for `reverse_recursively` ()\n')
main()
# Test reverse_recursively
print('Testing reverse_recursively.')
assert recursive_functions.reverse_recursively([1, 2, 3, 4])
== [4, 3, 2, 1]
life = ['born', 'grow up', 'grow old']
assert recursive_functions.reverse_recursively(life) == ['grow
old', 'grow up', 'born']
print('All tests pass for `reverse_recursively` ()\n')
main()
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education