(1 point) Consider the system of equations dx = X dt (1-) 5 dy = y ( 1 dt -x). y 6 taking (x, y) > 0. (a) Write an equation for the (non-zero) vertical (x-)nullcline of this system: (Enter your equation, e.g., y=x.) And for the (non-zero) horizontal (y-)nullcline: (Enter your equation, e.g., y=x.) (Note that there are also nullclines lying along the axes.) (b) What are the equilibrium points for the system? Equilibria = (Enter the points as comma-separated (x,y) pairs, e.g., (1,2), (3,4).) (c) Use your nullclines to estimate trajectories in the phase plane, completing the following sentence: If we start at the initial position (4, ;), trajectories ? v the point (Enter the point as an (x,y) pair, e.g., (1,2).)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Consider the system of equations (see image) taking (x,y) > 0. 

a. Write an equation for the (non-zero) vertical (x-)nullcline of this system. (Enter your equation, e.g., y=x.). And for the (non-zero) horizontal (y-)nullcline. (Enter your equation, e.g., y=x.)

b. What are the equilibrium points for the system? (Enter the points as comma-separated (x,y) pairs, e.g., (1,2), (3,4).)

c. Use your nullclines to estimate trajectories in the phase plane, completing the following sentence:

If we start at the initial position (4,1/2), trajectories [converge to, diverge from, cycle around, spiral into, spiral out from] the point (?, ?)

(1 point) Consider the system of equations
*=-(1--)
>(1 -{ -x).
dx
= X
dt
- V
dy
= y
dt
taking (x, y) > 0.
(a) Write an equation for the (non-zero) vertical (x-)nullcline of this system:
(Enter your equation, e.g., y=x.)
And for the (non-zero) horizontal (y-)nullcline:
(Enter your equation, e.g., y=x.)
(Note that there are also nullclines lying along the axes.)
(b) What are the equilibrium points for the system?
Equilibria =
(Enter the points as comma-separated (x,y) pairs, e.g., (1,2), (3,4).)
(c) Use your nullclines to estimate trajectories in the phase plane, completing the following sentence:
If we start at the initial position (4, -), trajectories ?
v the point
(Enter the point as an (x,y) pair, e.g., (1,2).)
Transcribed Image Text:(1 point) Consider the system of equations *=-(1--) >(1 -{ -x). dx = X dt - V dy = y dt taking (x, y) > 0. (a) Write an equation for the (non-zero) vertical (x-)nullcline of this system: (Enter your equation, e.g., y=x.) And for the (non-zero) horizontal (y-)nullcline: (Enter your equation, e.g., y=x.) (Note that there are also nullclines lying along the axes.) (b) What are the equilibrium points for the system? Equilibria = (Enter the points as comma-separated (x,y) pairs, e.g., (1,2), (3,4).) (c) Use your nullclines to estimate trajectories in the phase plane, completing the following sentence: If we start at the initial position (4, -), trajectories ? v the point (Enter the point as an (x,y) pair, e.g., (1,2).)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,